精英家教网 > 高中数学 > 题目详情
19.已知正方形ABCD的面积为8,沿对角线AC把△ACD折起,则三棱锥D-ABC的外接圆的表面积等于16π.

分析 正方形ABCD的面积为8,求得边长,再利用沿对角线AC把△ACD折起,则三棱锥D-ABC的外接球的球心为AC的中点,求得半径,根据球的表面积公式,即可求得结论.

解答 解:沿对角线AC把△ACD折起,则三棱锥D-ABC的外接球的球心为AC的中点,
∵正方形ABCD的面积为8,∴AC=4,∴球的半径为2
∴三棱锥D-ABC的外接球的表面积等于4π×22=16π
故答案为:16π.

点评 本题考查矩形的外接球的表面积的求法,解题的关键是利用正方形ABCD的面积为8,求得边长,再利用沿对角线AC把△ACD折起,则三棱锥D-ABC的外接球的球心为AC的中点,求得半径.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知sinα=$\frac{2}{3}$,则sin(2α-$\frac{π}{2}$)=(  )
A.-$\frac{\sqrt{5}}{3}$B.-$\frac{1}{9}$C.$\frac{1}{9}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.各项均为正数的数列{xn}对一切n∈Nx均满足xn+$\frac{1}{{x}_{n+1}}$<2.证明:
(1)xn<xn+1
(2)1-$\frac{1}{n}$<xn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,在棱长为1的正方体ABCD-A1B1C1D1中,P,Q分别是线段CC1,BD上的点,R是直线AD上的点,满足PQ∥平面ABC1D1,PQ⊥RQ,且P、Q不是正方体的顶点,则|PR|的最小值是(  )
A.$\frac{{\sqrt{42}}}{6}$B.$\frac{{\sqrt{30}}}{5}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,在长方形OABC内任取一点P(x,y),则点P落在阴影部分的概率为(  )
A.$1-\frac{3}{2e}$B.$1-\frac{1}{2e}$C.$1-\frac{2}{e}$D.$1-\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a,b∈(0,+∞),求证:${({{a^3}+{b^3}})^{\frac{1}{3}}}<{({{a^2}+{b^2}})^{\frac{1}{2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$\frac{1+2i}{a+bi}$=2-i(i为虚数单位,a,b∈R),在|a-bi|=(  )
A.-iB.1C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆 C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)经过点 (1,$\frac{{\sqrt{3}}}{2}$),离心率为$\frac{{\sqrt{3}}}{2}$,点A为椭圆C的右顶点,直线l与椭圆相交于不同于点 A 的两个点P (x1,y1),Q (x2,y2).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)当 $\overrightarrow{AP}$?$\overrightarrow{AQ}$=0时,求△OPQ面积的最大值;
(Ⅲ)若x1y2-x2y1≥2,求证:|OP|2+|OQ|2 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知约束条件$\left\{\begin{array}{l}{x-3y+4≥0}\\{x+2y-1≥0}\\{3x+y-8≤0}\end{array}\right.$,若目标函数z=x+ay(a≥0)在且只在点(2,2)处取得最大值,则a的取值范围为(  )
A.0<a<$\frac{1}{3}$B.a≥$\frac{1}{3}$C.a>$\frac{1}{3}$D.0<a<$\frac{1}{2}$

查看答案和解析>>

同步练习册答案