精英家教网 > 高中数学 > 题目详情
9.已知sinα=$\frac{2}{3}$,则sin(2α-$\frac{π}{2}$)=(  )
A.-$\frac{\sqrt{5}}{3}$B.-$\frac{1}{9}$C.$\frac{1}{9}$D.$\frac{\sqrt{5}}{3}$

分析 利用诱导公式、二倍角的余弦公式,求得sin(2α-$\frac{π}{2}$)的值.

解答 解:∵sinα=$\frac{2}{3}$,则sin(2α-$\frac{π}{2}$)=-cos2α=-(1-2sin2α)=-1+2•$\frac{4}{9}$=-$\frac{1}{9}$,
故选:B.

点评 本题主要考查诱导公式、二倍角的余弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在△ABC中,角A,B,C的对边分别是a,b,c,已知(b-2a)•cosC+c•cosB=0
(1)求角C;
(2)若$c=2,{S_{△ABC}}=\sqrt{3}$,求边长a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.对于函数f(x)=$\frac{x-1}{x+1}$,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*,且n≥2),令集合M={x|f2036(x)=x,x∈R},则集合M为(  )
A.空集B.实数集C.单元素集D.二元素集

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=ax-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.
(1)求k的值;
(2)若f(1)<0,试判断y=f(x)的单调性,并求使不等式f(x2+tx)+f(4-x)<0恒成立的t的取值范围;
(3)若f(1)=$\frac{3}{2}$,g(x)=a2x+a-2x-2f(x),求g(x)在[1,+∞)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知不等式$\sqrt{2}$sin$\frac{x}{4}$cos$\frac{x}{4}$+$\sqrt{6}$cos2$\frac{x}{4}$-$\frac{\sqrt{6}}{2}$-m≥0对于x∈[-$\frac{π}{3}$,$\frac{π}{3}$]恒成立,则实数m的取值范围是(  )
A.(-∞,-$\sqrt{2}$]B.(-∞,$\frac{\sqrt{2}}{2}$]C.[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]D.[$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=|x+1|-2|x-1|,则不等式f(x)>1的解集为(  )
A.($\frac{2}{3}$,2)B.($\frac{1}{3}$,2)C.($\frac{2}{3}$,3)D.($\frac{1}{3}$,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.数列{an}的前n项和为Sn=4n2-n+2,则该数列的通项公式为(  )
A.an=8n+5(n∈N*B.an=$\left\{\begin{array}{l}5(n=1)\\ 8n-5(n≥2,n∈{N^*})\end{array}\right.$
C.an=8n+5(n≥2)D.an=8n+5(n≥1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的一个焦点为F,该椭圆上有一点A,满足△OAF是等边三角形(O为坐标原点),则椭圆的离心率是(  )
A.$\sqrt{3}-1$B.$2-\sqrt{3}$C.$\sqrt{2}-1$D.$2-\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知正方形ABCD的面积为8,沿对角线AC把△ACD折起,则三棱锥D-ABC的外接圆的表面积等于16π.

查看答案和解析>>

同步练习册答案