精英家教网 > 高中数学 > 题目详情
9.已知f(x)是一次函数,若f(f(x))=4x+8,则f(x)的解析式为f(x)=2x+$\frac{8}{3}$,或f(x)=-2x-8.

分析 设f(x)=kx+b,k、b为常数,则f(f(x))=k2x+kb+b,再根据f(f(x))=4x+8,可得$\left\{\begin{array}{l}{{k}^{2}=4}\\{kb+b=8}\end{array}\right.$,求得k和b的值,可得函数的解析式.

解答 解:设f(x)=kx+b,k、b为常数,则f(f(x))=k•f(x)+b=k2x+kb+b,
再根据f(f(x))=4x+8,可得$\left\{\begin{array}{l}{{k}^{2}=4}\\{kb+b=8}\end{array}\right.$,求得$\left\{\begin{array}{l}{k=2}\\{b=\frac{8}{3}}\end{array}\right.$,或$\left\{\begin{array}{l}{k=-2}\\{b=-8}\end{array}\right.$,
故f(x)=2x+$\frac{8}{3}$,或f(x)=-2x-8,
故答案为:f(x)=2x+$\frac{8}{3}$,或f(x)=-2x-8.

点评 本题主要考查用待定系数法求函数的解析式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知α为锐角,若sin2α+cos2α=-$\frac{1}{5}$,则tanα=(  )
A.3B.2C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数f(x)中,满足“对任意x1,x2∈(-∞,0),当x1<x2时,都有f(x1)<f(x2)”的是(  )
A.f(x)=4-2xB.f(x)=$\frac{1}{x-2}$C.f(x)=x2-2x-2D.f(x)=-|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设△ABC的内角A,B,C的对边分别为a,b,c,且满足sinA+sinB=[cosA-cos(π-B)]sinC.
(1)判断△ABC是否为直角三角形,并说明理由;
(2)若a+b+c=1+$\sqrt{2}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=$\sqrt{6}$,M是CC1的中点,则异面直线AB1与A1M所成角为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{\begin{array}{l}{x+\frac{2}{x}-1,x≥1}\\{lg({x}^{2}+1),x<1}\end{array}\right.$,则f(f(-3))=2,f(x)的最小值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设Sn是数列{an}的前n项和,an=4Sn-3,则S2=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知抛物线y2=2px过点A(1,2),则p=2,准线方程是x=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一个半球与一个正四棱锥组成的几何体的正视图与俯视图如图所示,其中正视图中的等腰三角形的腰长为3.若正四棱锥的顶点均在该半球所在球的球面上,则此球的半径为(  )
A.2B.$\frac{3}{2}$$\sqrt{2}$C.$\frac{12}{5}\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

同步练习册答案