分析 设f(x)=kx+b,k、b为常数,则f(f(x))=k2x+kb+b,再根据f(f(x))=4x+8,可得$\left\{\begin{array}{l}{{k}^{2}=4}\\{kb+b=8}\end{array}\right.$,求得k和b的值,可得函数的解析式.
解答 解:设f(x)=kx+b,k、b为常数,则f(f(x))=k•f(x)+b=k2x+kb+b,
再根据f(f(x))=4x+8,可得$\left\{\begin{array}{l}{{k}^{2}=4}\\{kb+b=8}\end{array}\right.$,求得$\left\{\begin{array}{l}{k=2}\\{b=\frac{8}{3}}\end{array}\right.$,或$\left\{\begin{array}{l}{k=-2}\\{b=-8}\end{array}\right.$,
故f(x)=2x+$\frac{8}{3}$,或f(x)=-2x-8,
故答案为:f(x)=2x+$\frac{8}{3}$,或f(x)=-2x-8.
点评 本题主要考查用待定系数法求函数的解析式,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=4-2x | B. | f(x)=$\frac{1}{x-2}$ | C. | f(x)=x2-2x-2 | D. | f(x)=-|x| |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{3}{2}$$\sqrt{2}$ | C. | $\frac{12}{5}\sqrt{5}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com