精英家教网 > 高中数学 > 题目详情
1.设Sn是数列{an}的前n项和,an=4Sn-3,则S2=$\frac{2}{3}$.

分析 在已知数列递推式中,分别取n=1,2求得a1,a2,则S2可求.

解答 解:由an=4Sn-3,得a1=4S1-3=4a1-3,得a1=1;
a2=4S2-3=4(a1+a2)-3,得a2=4×1+4a2-3,则${a}_{2}=-\frac{1}{3}$.
∴${S}_{2}={a}_{1}+{a}_{2}=1-\frac{1}{3}=\frac{2}{3}$.
故答案为:$\frac{2}{3}$.

点评 本题考查数列递推式,考查计算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知集合A={x∈R|log3x<1},B={x∈R|x2≥4},则A∩B=(  )
A.{x|-2≤x<0}B.{x|2<x<3}C.{x|2≤x<3}D.{x|x≤-2或2≤x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知集合A=(1,3),B={1,2},则A∪B=[1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)是一次函数,若f(f(x))=4x+8,则f(x)的解析式为f(x)=2x+$\frac{8}{3}$,或f(x)=-2x-8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若A,B互为对立事件,其概率分别为P(A)=$\frac{4}{x}$,P(B)=$\frac{1}{y}$,且x>0,y>0,则x+y的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.直线y=x-1的倾斜角是(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=1-2sin22x是(  )
A.偶函数且最小正周期为$\frac{π}{2}$B.奇函数且最小正周期为$\frac{π}{2}$
C.偶函数且最小正周期为πD.奇函数且最小正周期为π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow m$=(2sinωx,sinωx),$\overrightarrow n$=(cosωx,-2$\sqrt{3}$sinωx)(ω>0),函数f(x)=$\overrightarrow m$•$\overrightarrow n$+$\sqrt{3}$,直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1-x2|的最小值为$\frac{π}{2}$.
(I)求ω的值;        
(Ⅱ)求函数f(x)的单调增区间;
(Ⅲ)若f(a)=$\frac{2}{3}$,求sin(4a+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PD⊥平面ABCD,AD=1,AB=$\sqrt{3}$,BC=4.
(1)求证:BD⊥PC;
(2)若PD=4,设点E在棱PC上,$\overrightarrow{PE}$=$\frac{1}{4}$$\overrightarrow{PC}$,求三棱锥E-PAB的体积.

查看答案和解析>>

同步练习册答案