分析 由题意可知$\frac{4}{x}$+$\frac{1}{y}$=1,则x+y=(x+y)($\frac{4}{x}$+$\frac{1}{y}$)=5+$\frac{4y}{x}$+$\frac{x}{y}$,根据基本不等式即可求出最小值.
解答 解:A,B互为对立事件,其概率分别为P(A)=$\frac{4}{x}$,P(B)=$\frac{1}{y}$,且x>0,y>0,
∴P(A)+P(B)=$\frac{4}{x}$+$\frac{1}{y}$=1,
∴x+y=(x+y)($\frac{4}{x}$+$\frac{1}{y}$)=5+$\frac{4y}{x}$+$\frac{x}{y}$≥5+2$\sqrt{\frac{4y}{x}•\frac{x}{y}}$=9.当且仅当$\frac{4y}{x}$=$\frac{x}{y}$,即x=2y时等号成立
∴x+y的最小值为9.
故答案为:9.
点评 本题考查两数和的最小值的求法,是基础题,解题时要认真审题,注意对立事件及基本不等式性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 14 | B. | 12 | C. | 8 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | $-\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1] | B. | [1,2) | C. | [0,1] | D. | [1,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com