分析 (Ⅰ)由圆的方程找出圆心坐标与半径,分两种情况考虑:若切线方程斜率不存在,直线x=3满足题意;若斜率存在,设出切线方程,根据直线与圆相切时圆心到切线的距离d=r,求出k的值,综上即可确定出满足题意的切线方程;
(Ⅱ)求出圆心到直线的距离为1,利用点到直线的距离公式建立方程,即可得出结论.
解答 解:(Ⅰ)由圆的方程得到圆心(1,2),半径r=2,
当直线斜率不存在时,方程x=3与圆相切;
当直线斜率存在时,设方程为y-1=k(x-3),即kx-y+1-3k=0,
由题意得:$\frac{|k-2+1-3k|}{\sqrt{{k}^{2}+1}}$=2,
解得:k=$\frac{3}{4}$,
∴方程为y-1=$\frac{3}{4}$(x-3),即3x-4y-5=0,
则过点M的切线方程为x=3或3x-4y-5=0;
(Ⅱ)∵|AB|=2$\sqrt{3}$,
∴圆心到直线的距离为1,
∴$\frac{|a-2+4|}{\sqrt{{a}^{2}+1}}$=1,∴a=-$\frac{3}{4}$.
点评 此题考查了直线与圆相交的性质,涉及的知识有:点到直线的距离公式,圆的标准方程,利用了分类讨论的思想,熟练掌握定理及公式是解本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0]∪[2,+∞) | B. | [0,1] | C. | (-∞,0]∪(2,+∞) | D. | (-∞,1]∪[2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com