精英家教网 > 高中数学 > 题目详情
15.已知f(2x+1)=3x-2,且f(a)=4,则a的值是(  )
A.3B.4C.5D.6

分析 由函数y=f(x)的图象过点(a,4)知,3x-2=4,a=2x+1,从而求解.

解答 解:由题意,令3x-2=4,解得,x=2;
则a=2x+1=2×2+1=5,
故选:C.

点评 本题考查函数值的求法,是基础题,解题时要注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若点P(-3,4)在角α的终边上,则cosα=(  )
A.$-\frac{3}{5}$B.$\frac{3}{5}$C.$-\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点P(5,3,6),直线l过点A(2,3,1),且一个方向向量$\overrightarrow l=({1,0,-1})$,则点P到直线l的距离为4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆C的方程为(x-1)2+(y-2)2=4.
(Ⅰ)求过点M(3,1)的圆C的切线方程;
(Ⅱ)若直线ax-y+4=0与圆C交于A、B两点,且|AB|=2$\sqrt{3}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,AB=4,BC=6,∠B=60°,则S△ABC=6$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.给出下列5个命题,①由于零向量$\overrightarrow 0$方向不确定,故$\overrightarrow 0$不能与任意向量平行
②$\overrightarrow{AB}$与$\overrightarrow{CD}$是共线向量,则A.B.C.D四点共线
③平行四边形ABCD中,一定有$\overrightarrow{AB}=\overrightarrow{DC}$
④若$\overrightarrow m=\overrightarrow n,\;\;\overrightarrow n=\overrightarrow k$,则$\overrightarrow m=\overrightarrow k$⑤若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,则$\overrightarrow a$∥$\overrightarrow c$
其中不正确的命题有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}是递增的等差数列,a2,a4是方程x2-5x+6=0的根
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列a1,a3,a5,…a2n-1的和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.计算定积分$\int_{\frac{π}{6}}^{\frac{π}{2}}{cos3xdx}$=$-\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.先画一个边长为2的正方形,再将这个正方形的各边中点相连得到第2个正方形,依此类推,则第10个正方形的面积为$\frac{1}{128}$.(用最简分数表示)

查看答案和解析>>

同步练习册答案