| A. | 1 | B. | $\frac{4}{5}$ | C. | -1 | D. | -$\frac{4}{5}$ |
分析 根据对数函数的单调性,我们易判断出log220∈(4,5),结合已知中f(-x)=-f(x),f(x-2)=f(x+2)且x∈(-1,0)时,利用函数的周期性与奇偶性,即可得到f(log220)的值.
解答 解:∵定义在R上的函数f(x)满足f(-x)=-f(x),
∴函数f(x)为奇函数
又∵f(x-2)=f(x+2)
∴函数f(x)为周期为4是周期函数
又∵log232>log220>log216
∴4<log220<5
∴f(log220)=f(log220-4)=f(log2 $\frac{5}{4}$)=-f(-log2 $\frac{5}{4}$)
又∵x∈(-1,0)时,f(x)=2x,
∴f(-log2 $\frac{5}{4}$)=$\frac{4}{5}$
故f(log220)=-$\frac{4}{5}$.
故选:D.
点评 本题考查的知识点是函数的周期性和奇偶函数图象的对称性,其中根据已知中f(-x)=-f(x),f(x-2)=f(x+2)判断函数的奇偶性,并求出函数的周期是解答醒的关键,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | A(0)=(-∞,3] | B. | A(1)={2} | C. | A(2)=(3,+∞) | D. | A(3)=(3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a>b>0,则$\frac{1}{a}$<$\frac{1}{b}$ | B. | 若0>a>b,则$\frac{1}{a}$<$\frac{1}{b}$ | ||
| C. | 若a>b,c>d,则a+c>b+d | D. | 若a>b,c>d,则ac>bd |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com