精英家教网 > 高中数学 > 题目详情

如图,在△ABC中,BC、CA、AB的长分别为a,b,c,
(1)求证:a=bcosC+ccosB;
(2)若数学公式,试证明△ABC为直角三角形.

解:(1)∵

∴a2=accosB+bacosC
∴a=bcosC+ccosB
(2)由

,∴△ABC为直角三角形
证法二:由(1)类似可证得:c=acosB+bcosA(*)
得,accos(π-B)+c2=0.即:c2=accosB
∴c=acosB,结合(*)式得bcosA=0
∴A=90°,∴△ABC为直角三角形.
分析:(1)通过,两边平方化简,即可证明a=bcosC+ccosB;
(2)利用,转化为,推出,即可证明△ABC为直角三角形.
法二:利用(1)的结论,直接化简推出bcosA=0,说明A=90°即可.
点评:本题是中档题,通过向量的数量积转化为三角函数的有关知识,考查三角形的判定,计算能力常考题型,注意本题的解法比较多,(1)也可以取与同向的单位向量,在的两边作数量积,同样可证.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,已知∠ABC=90°,AB上一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直径BE的长;
(2)计算:△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=
3
BD,BC=2BD,则sinC的值为(  )
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,设
AB
=a
AC
=b
,AP的中点为Q,BQ的中点为R,CR的中点恰为P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,求平行四边形ANPM和三角形ABC的面积之比
S平行四边形ANPM
S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3.
(1)求∠ADC的大小;
(2)求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,已知
BD
=2
DC
,则
AD
=(  )

查看答案和解析>>

同步练习册答案