【题目】已知等比数列的前项和为,公比,,.
(1)求等比数列的通项公式;
(2)设,求的前项和.
【答案】(1)(2)
【解析】
(1)将已知两式作差,利用等比数列的通项公式,可得公比,由等比数列的求和可得首项,进而得到所求通项公式;(2)求得bn=n,,由裂项相消求和可得答案.
(1)等比数列的前项和为,公比,①,
②.
②﹣①,得,则,
又,所以,
因为,所以,
所以,
所以;
(2),
所以前项和.
【点睛】
裂项相消法适用于形如(其中是各项均不为零的等差数列,c为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和,还有一类隔一项的裂项求和,如或.
【题型】解答题
【结束】
22
【题目】已知函数的图象上有两点,.函数满足,且.
(1)求证:;
(2)求证:;
(3)能否保证和中至少有一个为正数?请证明你的结论.
【答案】(1)见解析(2)见解析(3)能
【解析】
(1)由f(1)=0,且a>b>c,可判断a>0,c<0且b=﹣a﹣c,所以a>﹣a﹣c>c,从而可证明;(2)由题可知f(m1)=﹣a或f(m2)=﹣a,即m1或m2是方程f(x)=﹣a的一个实根,即ax2+bx+c+a=0有根,结合二次方程的实根存在条件即可证;(3)由f(x)=0的两根中,其中一根为1,另一根为,结合二次方程的根的存在及二次函数的单调性可证.
(1)证明:,且,所以,
因为,所以,
所以,
(2)因为.
所以或,即或是方程的一个实根,
即有根,
所以,
因为,所以,
即,即,因为,所以
(3)设的两根为,显然其中一根为1,另一根为
设,
若,则
所以,所以
又函数在上是增函数,所以.
同理当时,
所以中至少有一个是正数.
科目:高中数学 来源: 题型:
【题目】如图,棱长为1(单位:)的正方体木块经过适当切割,得到几何体,已知几何体由两个底面相同的正四棱锥组成,底面平行于正方体的下底面,且各顶点均在正方体的面上,则几何体体积的取值范围是________(单位:).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x+2|+|x﹣a|,x∈R
(1)若a<0,且log2f(x)>2对任意x∈R恒成立,求实数a的取值范围;
(2)若a>0,且关于x的不等式f(x)< x有解,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,椭圆:的离心率为,焦点到相应准线的距离为,,分别为椭圆的左顶点和下顶点,为椭圆上位于第一象限内的一点,交轴于点,交轴于点.
(1)求椭圆的标准方程;
(2)若,求的值;
(3)求证:四边形的面积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若定义域为R的偶函数y=f(x)满足f(x+2)=﹣f(x),且当x∈[0,2]时,f(x)=2﹣x2 , 则方程f(x)=sin|x|在[﹣3π,3π]内根的个数是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=PB=PD=2,PA= .
(Ⅰ)求证:BD⊥PC;
(Ⅱ)若E是PA的中点,求三棱锥P﹣BCE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列中,公差,其前项和为,且满足:.
(Ⅰ)求数列的通项公式;
(Ⅱ)通过公式构造一个新的数列.若也是等差数列,求非零常数;
(Ⅲ)求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知M( ,0),N(2,0),曲线C上的任意一点P满足: = | |.
(Ⅰ)求曲线C的方程;
(Ⅱ)设曲线C与x轴的交点分别为A、B,过N的任意直线(直线与x轴不重合)与曲线C交于R、Q两点,直线AR与BQ交于点S.问:点S是否在同一直线上?若是,请求出这条直线的方程;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两名篮球运动员分别在各自不同的5场比赛所得篮板球数的茎叶图如图所示,已知两名运动员在各自5场比赛所得平均篮板球数均为10.
(1)求x,y的值;
(2)求甲乙所得篮板球数的方差和,并指出哪位运动员篮板球水平更稳定;
(3)教练员要对甲乙两名运动员篮板球的整体水平进行评估.现在甲乙各自的5场比赛中各选一场进行评估,则两名运动员所得篮板球之和小于18的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com