精英家教网 > 高中数学 > 题目详情
y=2x,y=log2x,y=x2这三个函数中,当0<x1<x2<1时,使f(
x1+x2
2
)>
f(x1)+f(x2)
2
恒成立的个数是
 
考点:对数的运算性质
专题:函数的性质及应用
分析:当0<x1<x2<1时,函数满足f(
x1+x2
2
)>
f(x1)+f(x2)
2
恒成立,即在(0,1)上函数的图象应是向上凸起型的,结合给出的三个函数图象的形状得答案.
解答: 解:当0<x1<x2<1时,使f(
x1+x2
2
)>
f(x1)+f(x2)
2
恒成立的函数的图象应是向上凸起型的,
结合这3个函数在(0,1)上的图象特征知,y=log2x 满足条件,
∴满足条件的函数只有y=log2x.
故答案为:1.
点评:本题考查函数的图象和性质,关键是对f(
x1+x2
2
)>
f(x1)+f(x2)
2
恒成立的理解,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

我校高2014级迎新晚会的舞台天花板上有前、后两排共4个灯架,每排2个,每个灯架上安装了5盏射灯,每盏射灯发光的概率为
1
2
.若一个灯架上至少有3盏射灯正常发光,则这个灯架不需要维修,否则需要维修.
(Ⅰ)求恰有两个灯架需要维修的概率;
(Ⅱ)若前排每个灯架的维修费用为100元,后排每个灯架的维修费用为200元,记ξ为维修灯架的总费用,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:
x=2+3t
y=3-4t
(t为参数);椭圆C1
x=2cosθ
y=4sinθ
(θ为参数)
(Ⅰ)求直线l倾斜角的余弦值;
(Ⅱ)试判断直线l与椭圆C1的交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆
x2
4
+y2=1
上一点M(除短轴端点处)与短轴两端点B1、B2的连线分别交x轴于P、Q两点,求证|OP|•|OQ|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某班分成8个小组,每小组5人,现要从中选出4人进行4个不同的化学实验,且每组至多选一人,则不同的安排方法种数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司将6个招聘名额分给3个下属单位,一个单位3个名额,一个单位2个名额,一个单位1个名额,一共有
 
种不同的分配方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
,(1+an+1)(1-an)=2,则a2014=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{xn}满足xn+3=xn,xn+2=|xn+1-xn|(n∈N*),x1=1,x2=a(a≤1,a≠0)则数列{xn}的前2010项的和S2010
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中a1=2014,前n项和为Sn
S12
12
-
S10
10
=-2,则S2014的值为
 

查看答案和解析>>

同步练习册答案