精英家教网 > 高中数学 > 题目详情
等差数列{an}中a1=2014,前n项和为Sn
S12
12
-
S10
10
=-2,则S2014的值为
 
考点:等差数列的性质
专题:计算题,等差数列与等比数列
分析:设等差数列的公差为d,利用等差数列的求和公式及
S12
12
-
S10
10
=-2可求得公差d,{
Sn
n
}组成以2014为首项,-1为公差的等差数列可得答案.
解答: 解:设等差数列的公差为d,
S12
12
-
S10
10
=-2,
∴{
Sn
n
}组成以2014为首项,-1为公差的等差数列,
S2014
2014
=2014+(2014-1)×(-1)=1,
∴S2014=2014,
故答案为:2014.
点评:本题考查等差数列的求和公式,属基础题,熟记等差数列的求和公式是解决该题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

y=2x,y=log2x,y=x2这三个函数中,当0<x1<x2<1时,使f(
x1+x2
2
)>
f(x1)+f(x2)
2
恒成立的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点为F,若该双曲线上存在点P,满足以双曲线虚轴为直径的圆与线段PF相切与线段PF的中点,则该双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x
x+1
的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,甲、乙、丙中的四边形ABCD都是边长为2的正方形,其中甲、乙两图中阴影部分分别以AB的中点、B点为顶点且开口向上的抛物线(皆过D点)下方的部分,丙图中阴影部分是以C为圆心、半径为2的圆弧下方的部分.三只麻雀分别落在这三块正方形木板上休息,且它们落在所在木板的任何地方是等可能的,若麻雀落在甲、乙、丙三块木板上阴影部分的概率分别是P1、P2、P3,则P1、P2、P3的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2是焦距等于6的双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若S13=78,a7+a12=10,则a17=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,0),若曲线Γ上存在四个点B,C,D,E,使得△ABC和△ADE都是正三角形,则称曲线Γ为“黄金曲线”,给定下列四条曲线:①4x+3y2=0;②x2+y2=
1
4
;③
x2
2
+y2=1;④
x2
3
-y2=1.其中,“黄金曲线”的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥的底面是边长为
3
的等边三角形,侧棱长都为2,则侧棱与底面所成角的大小为(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

同步练习册答案