精英家教网 > 高中数学 > 题目详情
5.分析下列四个命题:
①若实数a,b,c满足a+b+c=3,则a,b,c中至少有一个不小于1;
②若z为复数,且|z|=1,则|z-i|的最大值等于2;
③任意x∈(0,+∞)都有x>sinx;
④若f(x)是奇函数,则∫${\;}_{-a}^{a}$f(x)dx=2∫${\;}_{0}^{a}$f(x)dx.
其中,正确命题的序号是①②③.(把你认为正确命题的序号都填上)

分析 ①可运用反证法,即可判断;
②运用|z-i|≤|z|+|-i|=2,即可得到最大值;
③运用导数,判断函数的单调性,再由单调性可证;
④根据定积分的几何意义进行判断.

解答 解:①则用反证法,假设a,b,c都不小于1,a≥1,b≥1,c≥1,则a+b+c≥3,与a+b+c<3,矛盾,故可得a,b,c中至少有一个不小于1,故①正确;
②若z为复数,且|z|=1,则由|z-i|≤|z|+|-i|=2,可得|z-i|的最大值等于2,故②正确;
③任意x∈(0,+∞),根据(x-sinx)′=1-cosx≥0,可得y=x-sinx在R上为增函数,
当x=0时,y=x-sinx=0,可得任意x∈(0,+∞),都有x-sinx>0,即x>sinx,故③正确.
④f(x)是奇函数,∴其图象关于原点对称,
∵定积分的几何意义是函数图象与x轴所围成的封闭图形的面积的代数和,
∴函数f(x)在区间[-a,a]上的图象必定关于原点O对称,
∴函数图象与x轴所围成的封闭图形的面积的代数和为0,
∴∫${\;}_{-a}^{a}$f(x)dx=0,故④错误.
故答案为:①②③.

点评 本题以命题的真假判断为载体,考查函数的单调性及应用,复数的几何意义,及定积分的几何意义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知第一象限的点M在椭圆4x2+9y2=324上,且M到椭圆右准线的距离为4$\sqrt{5}$.
(1)求点M的坐标;
(2)如果点N在椭圆上,且线段MN经过椭圆的右焦点,求|MN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知数列{an}是以a1为首项,q为公比的等比数列,对于给定的a1,满足q2-2a1q+2a1-1=0的数列{an}是唯一的,则首项a1=1或$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,A=$\frac{π}{3}$,BC=3,求AC+AB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,过点F1并且垂直于x轴的直线为l,若过原点O和F2并和直线l相切的圆的半径等于点F2到双曲线C的两条渐近线的距离之和,则双曲线C的离心率为$\frac{4\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.tan170°=a-1,则tan20°等于$\frac{2-2a}{2a-{a}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率是$\frac{\sqrt{3}}{2}$,过点P(0,1)的动直线l与椭圆相交于A、B两点,当直线l平行于x轴时,直线l被椭圆E截得的线段长为4.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设O为坐标原点,是否存在常数λ,使得$\overrightarrow{OA}•\overrightarrow{OB}$+λ$\overrightarrow{PA}•\overrightarrow{PB}$为定值?若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若存在实数k和b,使得函数f(x)和g(x)对定义域内的任意x均满足:[f(x)-(kx+b)][g(x)-(kx+b)]≤0,且存在x1使得f(x1)-(kx1+b)=0,存在x2使得g(x2)-(kx2+b)=0,则称直线l:y=kx+b为函数f(x)和g(x)的“分界线”.在下列说法中正确的是(  )
A.任意两个一次函数最多存在一条“分界线”
B.“分界线”存在的两个函数的图象最多只有两个交点
C.f(x)=x2-2x与g(x)=-x2+4的“分界线”是y=-x+2
D.f(x)=x2与g(x)=-(x-1)2的“分界线”是y=0或$y=x-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.当0<a<1时,在同一坐标系中,函数y=a-x与$y={log_{\frac{1}{a}}}x$的图象可能是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案