精英家教网 > 高中数学 > 题目详情
已知函数f(x)=3x2-6x-5.
(1)求不等式f(x)>4的解集;
(2)设g(x)=f(x)-4x2+mx,若存在x∈R,使g(x)>0,求m的取值范围;
(3)若对于任意的a∈[1,2],关于x的不等式f(x)≤x2-(2a+6)x+a+b在区间[1,3]上恒成立,求实数b的取值范围.
考点:函数恒成立问题,一元二次不等式的解法
专题:函数的性质及应用,不等式的解法及应用
分析:(1)直接求解一元二次不等式得答案;
(2)把f(x)代入g(x)=f(x)-4x2+mx,若存在x∈R,使g(x)>0,转化为不等式-x2+(m-6)x-5>0的解集非空,由判别式大于0得答案;
(3)把对于任意的a∈[1,2],关于x的不等式f(x)≤x2-(2a+6)x+a+b在区间[1,3]上恒成立,
等价于对于任意的a∈[1,2],不等式2x2+2ax-(a+b+5)≤0在区间[1,3]上恒成立,构造函数
ϕ(x)=2x2+2ax-(a+b+5),求出对称轴,由a的范围得到对称轴的范围,求出ϕ(x)的最值后借助于
b≥5a+13恒成立求得实数b的取值范围.
解答: 解:(1)由f(x)>4,得3x2-6x-5>4,即x2-2x-3>0.
解得x<-1或x>3.
∴不等式f(x)>4的解集为{x|x<-1或x>3};
(2)g(x)=f(x)-4x2+mx=3x2-6x-5-4x2+mx=-x2+(m-6)x-5.
若存在x∈R,使g(x)>0,即不等式-x2+(m-6)x-5>0的解集非空,
也就是x2-(m-6)x+5<0的解集非空.
则[-(m-6)]2-20>0,解得:
m>6+2
5
m<6-2
5

(3)对于任意的a∈[1,2],关于x的不等式f(x)≤x2-(2a+6)x+a+b在区间[1,3]上恒成立,
等价于对于任意的a∈[1,2],不等式2x2+2ax-(a+b+5)≤0在区间[1,3]上恒成立,
令ϕ(x)=2x2+2ax-(a+b+5),对称轴x=-
a
2

由已知,-
a
2
∈[-1,-
1
2
]

∴ϕmax(x)=ϕ(3)=5a-b+13,
∴只要当a∈[1,2]时,5a-b+13≤0恒成立即可,
即当a∈[1,2]时,b≥5a+13恒成立,
∴实数b的取值范围是[23,+∞).
点评:本题考查了一元二次不等式的解法,考查了函数恒成立问题,体现了数学转化思想方法,考查了学生的灵活变形能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a=
e
e-1
1
x
dx,则二项式(ax-
1
x
8的展开式中x2项的系数是(  )
A、-1120B、1120
C、-1792D、1792

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:函数f(x)=x3-3x在区间(-1,1)内单调递减,命题q:函数f(x)=|sin2x|的最小正周期为π,则下列命题为真命题的是(  )
A、p∧q
B、(¬p)∨q
C、p∨q
D、(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知1,a,b,c,4成等比数列,则实数b为(  )
A、4B、-2C、±2D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=-1,an+1=3an+2n,求an

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线l与曲线C满足下列两个条件:(i)直线l在点P(x0,y0)处与曲线C相切;(ii)曲线C在P附近位于直线l的两侧,则称直线l在点P处“切过”曲线C.
下列命题正确的是
 
 (写出所有正确命题的编号)
①直线l:y=0在点P(0,0)处“切过”曲线C:y=x3
②直线l:x=-1在点P(-1,0)处“切过”曲线C:y=(x+1)2
③直线l:y=x在点P(0,0)处“切过”曲线C:y=sinx
④直线l:y=x-1在点P(1,0)处“切过”曲线C:y=lnx,
⑤若直线l在点P(x0,f(x0))处“切过”曲线C:f(x)=ax3+bx2+cx+d(a≠0),则x0=-
b
3a

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=ax2+bx+c(c≠0)是偶函数,则g(x)=ax3+bx2+cx(  )
A、是奇函数而不是偶函数
B、是偶函数而不是奇函数
C、既是奇函数又是偶函数
D、既非奇函数又非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-x2+2(a-1)x+3在区间(-∞,2]上单调递增,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x2-2x-3的定义域为A,值域为B,则∁AB=(  )
A、[-4,+∞)
B、(-4,+∞)
C、R
D、(-∞,-4)

查看答案和解析>>

同步练习册答案