精英家教网 > 高中数学 > 题目详情
已知直线l:
x=1+t
y=3-2t
(t为参数且t∈R)与曲线C:
x=cosα
y=2+cos2α
(α是参数且α∈[0,2π)),则直线l与曲线C的交点坐标为
 
考点:参数方程化成普通方程
专题:坐标系和参数方程
分析:把直线l的参数方程化为普通方程,曲线C的参数方程化为普通方程,两方程联立,即可求出直线l与曲线C的交点坐标.
解答: 解:直线l:
x=1+t
y=3-2t
(t为参数且t∈R),
化为普通方程是:2x+y-5=0;
曲线C:
x=cosα
y=2+cos2α
(α是参数且α∈[0,2π)),
化为普通方程是:y=2x2+1(其中-1≤x≤1);
2x+y-5=0
y=2x2+1(-1≤x≤1)

解得x=1,y=3;
∴直线l与曲线C的交点坐标为(1,3).
故答案为:(1,3).
点评:本题考查了参数方程的应用问题,解题时可以把参数方程化为普通方程来解答,要注意互化前后范围是否一致,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

集合M={1,2},N={3,4,5},P={x|x=a+b,a∈M,b∈N},则集合P的元素个数为(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非零数列{an}的递推公式为a1=1,an=an•an+1+2an+1(n∈N*
(1)求证:数列{1+
1
an
}是等比数列;
(2)若关于n的不等式
1
n+log2(1+
1
a1
)
+
1
n+log2(1+
1
a2
)
+…+
1
n+log2(1+
1
an
)
<m-
5
2
有解,求整数m的最小值.
(3)在数列{
1
an
+1-(-1)n}(1≤n≤11)中,是否一定存在首项、第r项、第s项(1<r<s≤11),使得这三项依次成等差数列?若存在,请指出r、s所满足的条件;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

小明在做一道函数题时,不小心将一个分段函数的解析式污染了一部分,但是已知这个函数的程序框图如图所示,且当分别输入数据-2,0 时,输出的结果都是0.
(Ⅰ)求这个分段函数的解析式并计算f(f(-1));
(Ⅱ)若函数g(x)=f(x)-m有三个零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点分别是F1,F2,过F1垂直于x轴的直线与E相交于A,B 两点,且|AB|=3
2
,离心率为
2
2

(1)求椭圆E的方程;
(2)过焦点F2作与坐标轴不垂直的直线l交椭圆E于C,D两点,点M是点C关于x轴的对称点,在x轴上是否存在一个定点N使得D,M,N三点共线?若存在,求出点N坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2+cx+d(a≠0)的对称中心为M(x0,y0),记函数f(x)的导函数为f′(x),f′(x)的导函数为f″(x),则有f″(x0)=0.若函数f(x)=x3-3x2,则可求得f(
1
2013
)+f(
2
2013
)+…+f(
4024
2013
)+f(
4025
2013
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设正项数列{an}的前n项和为Sn,且
an
2
Sn
2
an+1
2
数列n(∈N*
(1)求数列{an}的通项公式;
(2)设bn=
an
2n
数列{bn}中是否存在正整数对(m,n),当m<n时使得{bn}中的三项b1,bm,bn ,成等差数列.若存在,求出m,n;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x
 x≥0
-x
  x<0
,若f(a)+f(-1)=3,则实数a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,长方体ABCD-A1B1C1D1中,交于顶点A的三条棱长分别为AD=3,AA1=4,AB=5,则从A点沿表面到C1的最短距离为(  )
A、5
2
B、
74
C、4
5
D、3
10

查看答案和解析>>

同步练习册答案