精英家教网 > 高中数学 > 题目详情
13.若存在x∈(0,+∞),使不等式ex(x2-x+1)(ax+3a-1)<1成立,则(  )
A.0$<a<\frac{1}{3}$B.a$<\frac{2}{e+1}$C.a$<\frac{2}{3}$D.a$<\frac{1}{3}$

分析 分类参数a<$\frac{1}{x+3}$$+\frac{1}{{e}^{x}({x}^{2}-x+1)(x+3)}$,构造函数y=$\frac{1}{x+3}$$+\frac{1}{{e}^{x}({x}^{2}-x+1)(x+3)}$,利用导数,观察法等判断函数的单调性,求解最值问,来解决存在性问题.

解答 解:∵x∈(0,+∞),
∴ex>0,(x2-x+1)>0,x+3>0,
∵ex(x2-x+1)(ax+3a-1)<1,
∴a<$\frac{1}{x+3}$$+\frac{1}{{e}^{x}({x}^{2}-x+1)(x+3)}$
令y=$\frac{1}{x+3}$$+\frac{1}{{e}^{x}({x}^{2}-x+1)(x+3)}$,
∵y=ex(x2-x+1),
∴y′=ex(x2+x)>0,x>0
∵y=x+3在(0,+∞)上单调递增,y=x+3>0,
∴y=$\frac{1}{x+3}$$+\frac{1}{{e}^{x}({x}^{2}-x+1)(x+3)}$在[0,+∞)上单调递减.
∴ymax=$\frac{1}{3}$$+\frac{1}{{e}^{0}(0-0+1)(0+3)}$=$\frac{2}{3}$,
∴存在x∈(0,+∞),使a<$\frac{1}{x+3}$$+\frac{1}{{e}^{x}({x}^{2}-x+1)(x+3)}$成立,
即a<$\frac{2}{3}$,
故选:C.

点评 本题考查了不等式的问题,分离参数解决问题,利用求解导数判断函数的单调性,解决较复杂的函数的单调性的判断问题,属于难度较大的题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在平行四边形ABCD中,$\overrightarrow{AD}$=(-6,-7),$\overrightarrow{AB}$=(2,-3),若平行四边形的对称中心为E,则$\overrightarrow{CE}$为(  )
A.(-2,5)B.(-2,-5)C.(2,-5)D.(2,5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)|y=x},则A∩B的子集个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设集合M是实数集R的一个子集,如果点x0∈R满足:对任意?>0,都存在x∈M,使得0<|x-x0|<?,称x0为集合M的一个“聚点”.若由集合:
①有理数集;
②无理数集;
③{sin$\frac{π}{n+1}$|n∈N*};
④{$\frac{n}{n+1}$|n∈N*}
其中以0为“聚点”的集合是①②③.(写出所有符合题意的结论序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知0<x<$\frac{π}{2}$,则函数$f(x)={3^{{{sin}^2}x}}+{3^{{{cos}^2}x}}$的最小值是2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知直线bx+ay+2=0与曲线y=x3-1在点P(1,0)处的切线平行,则$\frac{a}{b}$=(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{2}{3}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn=2n(n∈N+).
(1)求数列{an}的通项an
(2)设bn=n•an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,已知sinB=2cosCsinA,则△ABC的形状是(  )
A.等边三角形B.等腰直角三角形C.等腰三角形D.直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=excosx在点(0,f(0))处的切线方程是(  )
A.x+y+1=0B.x+y-1=0C.x-y+1=0D.x-y-1=0

查看答案和解析>>

同步练习册答案