精英家教网 > 高中数学 > 题目详情
2.在△ABC中,已知sinB=2cosCsinA,则△ABC的形状是(  )
A.等边三角形B.等腰直角三角形C.等腰三角形D.直角三角形

分析 利用sinB=sin(A+C)=sinAcosC+sinCcosA=2cosCsinA,即可得出结论.

解答 解:∵A+B+C=180°,
∴sinB=sin(A+C)=sinAcosC+sinCcosA=2cosCsinA,
∴sinCcosA-sinAcosC=0,即sin(C-A)=0,
∴A=C 即为等腰三角形.
故选:C.

点评 本题考查三角形形状的判断,考查和角的三角函数,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.钝角△ABC中,角A,B,C的对边分别为a,b,c,且有($\sqrt{2}$a-c)•cosB=bcosC.
(1)求角B的大小;
(2)设向量$\overrightarrow{m}$=(cos2A+1,cosA),$\overrightarrow{n}$=(1,-$\frac{8}{5}$),且$\overrightarrow{m}$⊥$\overrightarrow{n}$,求tanC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若存在x∈(0,+∞),使不等式ex(x2-x+1)(ax+3a-1)<1成立,则(  )
A.0$<a<\frac{1}{3}$B.a$<\frac{2}{e+1}$C.a$<\frac{2}{3}$D.a$<\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$x∈[\frac{π}{2},π]$,且$sin(x-\frac{π}{2})=\frac{1}{3}$,则sinx=$\frac{2\sqrt{2}}{3}$,tan(x-3π)=-2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$,x∈R)的最大值是10,f(x)的图象经过点(0,5),且相邻两条对称轴间的距离是$\frac{π}{2}$.
(Ⅰ)求f(x)的解析式;
(Ⅱ)将f(x)的图象向右平移$\frac{π}{6}$个单位长度后得到g(x)的图象,求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)在R上是奇函数,且满足f(x+2)=-f(x),当x∈[0,1]时,f(x)=2x,则f($\frac{19}{2}$)=(  )
A.-1B.1C.-19D.19

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}满足:Sn=1-an(n∈N*),其中Sn为数列{an}的前n项和.则{an}的通项公式为${a}_{n}=\frac{1}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=f(x)与函数y=g(x) 互为反函数,且f(x)=2x,则函数y=g(x2-1)的定义域是(-∞,-1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=aln(x-a)-$\frac{1}{2}$x2+x(a<0).
(1)当a=-2时,求f(x)在[-$\frac{3}{2}$,2]上的最小值(参考数据:ln2=0.6931);
(2)若函数f(x)有且仅有一个零点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案