分析 直接由数列递推式可得数列{an}是以$\frac{1}{2}$为首项,以$\frac{1}{2}$为公比的等比数列,再由等比数列的通项公式得答案.
解答 解:由Sn=1-an,得a1=1-a1,即${a}_{1}=\frac{1}{2}$;
且Sn+1=1-an+1,
∴an+1=-an+1+an,即$\frac{{a}_{n+1}}{{a}_{n}}=\frac{1}{2}$.
∴数列{an}是以$\frac{1}{2}$为首项,以$\frac{1}{2}$为公比的等比数列,
则${a}_{n}=\frac{1}{2}•\frac{1}{{2}^{n-1}}=\frac{1}{{2}^{n}}$.
故答案为${a}_{n}=\frac{1}{{2}^{n}}$.
点评 本题考查数列递推式,考查了等比关系的确定,考查等比数列的通项公式的求法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 锐角三角形 | B. | 等腰直角三角形 | C. | 钝角三角形 | D. | 直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x+y+1=0 | B. | x+y-1=0 | C. | x-y+1=0 | D. | x-y-1=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | 2 | D. | -2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com