精英家教网 > 高中数学 > 题目详情
11.函数y=f(x)与函数y=g(x) 互为反函数,且f(x)=2x,则函数y=g(x2-1)的定义域是(-∞,-1)∪(1,+∞).

分析 利用反函数概念得出g(x)=log2x,利用对数函数性质转化为不等式x2-1>0求解即可.

解答 解:∵函数y=f(x)与函数y=g(x) 互为反函数,且f(x)=2x
∴g(x)=log2x,定义域为(0,+∞)
∴函数y=g(x2-1)的定义域满足;x2-1>0,即x>1或x<-1,
∴定义域为:(-∞,-1)∪(1,+∞)
故答案为;(-∞,-1)∪(1,+∞)

点评 本题考查了反函数的概念性质,对数函数的性质,不等式的运用,属于容易题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设集合M是实数集R的一个子集,如果点x0∈R满足:对任意?>0,都存在x∈M,使得0<|x-x0|<?,称x0为集合M的一个“聚点”.若由集合:
①有理数集;
②无理数集;
③{sin$\frac{π}{n+1}$|n∈N*};
④{$\frac{n}{n+1}$|n∈N*}
其中以0为“聚点”的集合是①②③.(写出所有符合题意的结论序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,已知sinB=2cosCsinA,则△ABC的形状是(  )
A.等边三角形B.等腰直角三角形C.等腰三角形D.直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设命题p:函数f(x)=lg(ax2-x+$\frac{a}{16}$)的定义域为R;命题q:x-x2<a对一切的实数x恒成立,如果命题“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设△ABC的内角A,B,C所对的边分别为a,b,c,若acosB+bcosA=csinC,则△ABC的形状为(  )
A.锐角三角形B.等腰直角三角形C.钝角三角形D.直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=|x+2|-|x-1|.
(1)求不等式f(x)>1解集;
(2)若关于x的不等式f(x)+4≥|1-2m|有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=excosx在点(0,f(0))处的切线方程是(  )
A.x+y+1=0B.x+y-1=0C.x-y+1=0D.x-y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数$y=\frac{{\sqrt{1-x}}}{x}$的定义域为(  )
A.(-∞,0)∪(0,1]B.(0,1]C.(-∞,1]D.(-∞,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=2cos(ωx+$\frac{π}{6}$)(ω>0)满足f($\frac{8π}{3}$)=f($\frac{14π}{3}$),且在区间($\frac{8π}{3}$,$\frac{14π}{3}$)内有最大值但没有最小值,给出下列四个命题:
p1:f(x)在区间[0,2π]上单调递减;
p2:f(x)的最小正周期是4π;
p3:f(x)的图象关于直线x=$\frac{π}{2}$对称;
p4:f(x)的图象关于点($\frac{4π}{3}$,0)对称.
其中的真命题是p2

查看答案和解析>>

同步练习册答案