精英家教网 > 高中数学 > 题目详情
7.已知f(x)在R上是奇函数,且满足f(x+2)=-f(x),当x∈[0,1]时,f(x)=2x,则f($\frac{19}{2}$)=(  )
A.-1B.1C.-19D.19

分析 由题意可得函数的周期为4,结合奇偶性和题意可得答案.

解答 解:∵f(x+2)=-f(x),
∴f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),
∴函数f(x)是周期为4的周期函数,
∴f($\frac{19}{2}$)=f(2×4+$\frac{3}{2}$)=f($\frac{3}{2}$)=-f(-$\frac{1}{2}$),
又∵函数f(x)为R上的奇函数,且当x∈[0,1]时,有f(x)=2x,
∴f(-$\frac{1}{2}$)=-f($\frac{1}{2}$)=-1,
∴f($\frac{19}{2}$)=1.
故选:B.

点评 本题考查函数的奇偶性和周期性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知△ABC的面积S和三边a,b,c满足:S=a2-(b-c)2,b+c=6,则△ABC的面积S的最大值为$\frac{36}{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知直线bx+ay+2=0与曲线y=x3-1在点P(1,0)处的切线平行,则$\frac{a}{b}$=(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{2}{3}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(2,1),且($\overrightarrow{b}$-λ$\overrightarrow{a}$)⊥$\overrightarrow{a}$,则实数λ的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,已知sinB=2cosCsinA,则△ABC的形状是(  )
A.等边三角形B.等腰直角三角形C.等腰三角形D.直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列{an}满足a1=0,an+1=an+2n,则a2015等于(  )
A.2014×2013B.2015×2014C.2013×2012D.2015×2016

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设命题p:函数f(x)=lg(ax2-x+$\frac{a}{16}$)的定义域为R;命题q:x-x2<a对一切的实数x恒成立,如果命题“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=|x+2|-|x-1|.
(1)求不等式f(x)>1解集;
(2)若关于x的不等式f(x)+4≥|1-2m|有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若f(x)=5sinx,则$f'(\frac{π}{2})$=0.

查看答案和解析>>

同步练习册答案