精英家教网 > 高中数学 > 题目详情

【题目】以平面直角坐标系中的坐标原点为极点,轴的正半抽为极轴,建立极坐标系,曲线的极坐标方程是,直线的参数方程是为参数).

1)求曲线的直角坐标方程;

2)若直线与曲线交于两点,且,求直线的倾斜角.

【答案】1;(2.

【解析】

1)在曲线的极坐标的两边同时乘以,再由,可将曲线的极坐标方程化为直角坐标方程;

2)将直线的参数方程代入曲线的直角坐标方程,得到关于的一元二次方程,并列出韦达定理,借助弦长公式即可计算出的值.

1)在曲线的极坐标的两边同时乘以,得

所以,曲线的直角坐标方程为,即

2)设点在直线上对应的参数分别为

将直线的参数方程代入曲线的直角坐标方程,得

由韦达定理得

,得

,因此,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和为,且.

(1) 证明数列是等比数列,并求出数列的通项公式;

(2) ,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】各项均为正数的数列{an}的首项,前n项和为Sn,且Sn1Snλ..

(1){an}的通项公式;

(2)若数列{bn}满足bnλnan,求{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)时,求函数上的最大值和最小值;

(2)若函数上的单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)若,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数满足:对任意,都有,则不等式的解集为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数)的反函数为.

1)求

2)若函数的图象与直线有公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的最大值为,最小值为,则( )

A.存在实数,使

B.存在实数,使

C.对任意实数,有

D.对任意实数,有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】朱载堉(1536—1611),明太祖九世孙,音乐家、数学家、天文历算家,在他多达百万字的著述中以《乐律全书》最为著名,在西方人眼中他是大百科全书式的学者王子。他对文艺的最大贡献是他创建了“十二平均律”,此理论被广泛应用在世界各国的键盘乐器上,包括钢琴,故朱载堉被誉为“钢琴理论的鼻祖”。“十二平均律”是指一个八度有13个音,相邻两个音之间的频率之比相等,且最后一个音频率是最初那个音频率的2倍,设第二个音的频率为,第八个音的频率为,则等于( )

A. B. C. D.

查看答案和解析>>

同步练习册答案