1£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{-{x}^{3}+a{x}^{2}+bx£¨x¡Ü1£©}\\{c£¨{e}^{x-1}-1£©£¨x¡Ý1£©}\end{array}\right.$£¬ÔÚx=0£¬x=$\frac{2}{3}$´¦´æÔÚ¼«Öµ
£¨1£©ÇóʵÊýa£¬bµÄÖµ£»
£¨2£©º¯Êýy=f£¨x£©µÄͼÏóÉÏ´æÔÚÁ½µãA£¬B£¬Ê¹µÃ¡÷AOBÊÇÒÔ×ø±êÔ­µãOΪֱ½Ç¶¥µãµÄÖ±½ÇÈý½ÇÐΣ¬ÇÒб±ßABµÄÖеãÔÚyÖáÉÏ£¬ÇóʵÊýcµÄȡֵ·¶Î§£»
£¨3£©µ±c=eʱ£¬ÌÖÂÛ¹ØÓÚxµÄ¹ý³Ìf£¨x£©=kx£¨k¡ÊR£©µÄʵ¸ù¸öÊý£®

·ÖÎö £¨1£©µ±x£¼1ʱ£¬ÏȶԺ¯Êýf£¨x£©½øÐÐÇóµ¼£¬ÓÉÌâÒâÖªx=0£¬x=$\frac{2}{3}$ÊÇ·½³Ìf¡ä£¨x£©=0µÄÁ½Êµ¸ù£¬ÓÉΤ´ï¶¨Àí¿ÉÇó³öa£¬bµÄÖµ£®
£¨2£©¸ù¾Ý·Ö¶Îº¯Êý£¬·ÖÀàÌÖÂÛ£¬ÀûÓÃ$\overrightarrow{OA}•\overrightarrow{OB}$=0£¬½áºÏº¯Êý˼Ïë¼´¿ÉÇóʵÊýcµÄȡֵ·¶Î§£®
£¨3£©½«·½³Ìת»¯Îªº¯Êýy=kÓëy=f£¨x£©£¬½«·½³Ì¸ùµÄÎÊÌâת»¯Îªº¯ÊýͼÏó½»µãÎÊÌâ½â¾ö£®

½â´ð ½â£º£¨1£©µ±x£¼1ʱ£¬f¡ä£¨x£©=-3x2+2ax+b£®
Óɼ«ÖµµãµÄ±ØÒªÌõ¼þ¿ÉÖªx=0£¬x=$\frac{2}{3}$ÊÇ·½³Ìf¡ä£¨x£©=0µÄÁ½¸ù£¬
Ôò0+$\frac{2}{3}$=$\frac{2a}{3}$£¬0¡Á$\frac{2}{3}$=-$\frac{b}{3}$£¬½âµÃa=1£¬b=0£®
£¨2£©ÓÉ£¨1£©Öª£¬f£¨x£©=$\left\{\begin{array}{l}{-{x}^{3}+{x}^{2}£¨x£¼1£©}\\{c£¨{e}^{x-1}-1£©£¨x¡Ý1£©}\end{array}\right.$£¬
¸ù¾ÝÌõ¼þµÃA£¬BµÄºá×ø±ê»¥ÎªÏà·´Êý£¬²»·ÁÉèA£¨-t£¬t3+t2£©£¬B£¨t£¬f£¨t£©£©£¬£¨t£¾0£©£®
Èôt£¼1£¬Ôòf£¨t£©=-t3+t2£¬
ÓÉÌâÒâ$\overrightarrow{OA}•\overrightarrow{OB}$=0£¬¼´-t2+£¨t3+t2£©£¨-t3+t2£©=0£¬´Ëʱt=0£¬²»ºÏÌâÒ⣬ÉáÈ¥£»
Èôt¡Ý1£¬Ôòf£¨t£©=c£¨et-1-1£©£®
ÓÉÓÚABµÄÖеãÔÚyÖáÉÏ£¬ÇÒ¡ÏAOBÊÇÖ±½Ç£¬ËùÒÔBµã²»¿ÉÄÜÔÚxÖáÉÏ£¬¼´t¡Ù1£®
ͬÀíÓÉ$\overrightarrow{OA}•\overrightarrow{OB}$=0£¬¼´-t2+£¨t3+t2£©•c£¨et-1-1£©=0£¬
¡àc=$\frac{1}{£¨{e}^{t-1}-1£©£¨t+1£©}$£®
ÓÉÓÚº¯Êýg£¨t£©=$\frac{1}{£¨{e}^{t-1}-1£©£¨t+1£©}$£¨t£¾1£©µÄÖµÓòÊÇ£¨0£¬+¡Þ£©£¬
¡àʵÊýcµÄȡֵ·¶Î§ÊÇ£¨0£¬+¡Þ£©
£¨3£©µ±c=eʱ£¬f£¨x£©=$\left\{\begin{array}{l}{-{x}^{3}+{x}^{2}£¨x£¼1£©}\\{\frac{e}{x}£¨{e}^{x-1}-1£©£¨x¡Ý1£©}\end{array}\right.$£®
µ±x¡Ý1ʱ£¬f¡ä£¨x£©=$\frac{e}{{x}^{2}}$£¾0£¬´Ëʱº¯ÊýÔÚ[1£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬
Èçͼ£¬ÓÖµ±x=$\frac{1}{2}$ʱ£¬f£¨x£©È¡µÃ¼«´óÖµ$\frac{1}{4}$£¬
ÓÉͼÏóÖªµ±k¡Ê£¨0£¬$\frac{1}{4}$£©Ê±£¬º¯Êýy=kÓëy=f£¨x£©ÓÐ3¸ö²»Í¬µÄ½»µã£¬¼´·½³ÌÓÐ3¸öʵ¸ù£®
¹ÊʵÊýkµÄȡֵ·¶Î§Îª£¨0£¬$\frac{1}{4}$£©£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éº¯ÊýµÄµ¥µ÷ÐÔ¡¢¼«ÖµµãÓëÆäµ¼º¯ÊýÖ®¼äµÄ¹ØÏµ£¬ÒÔ¼°Ñо¿·½³Ì¸ùµÄ¸öÊýÎÊÌ⣬´ËÀàÎÊÌâÊ×Ñ¡µÄ·½·¨ÊÇͼÏ󷨼´¹¹Ô캯ÊýÀûÓú¯ÊýͼÏó½âÌ⣬Æä´ÎÊÇÖ±½ÓÇó³öËùÓеĸù£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®É躯Êýf£¨x£©=ex-1£¬£¨eΪ×ÔÈ»¶ÔÊýµ×Êý£©£¬g£¨x£©=x3-ax+b£¬g£¨x£©µÄµ¼º¯ÊýΪg¡ä£¨x£©£®
£¨¢ñ£©Çóº¯Êýy=f£¨2x£©-2xµÄ×îСֵ£®
£¨¢ò£©¼Çh£¨x£©=3f£¨x+2n+1£©-n[g¡ä£¨x£©+12x+a+60b]£¬Ìõ¼þ¢Ù£º¶ÔÈÎÒâx¡Ê[-1£¬1]£¬ÓÐg£¨x£©¡Ý0£»Ìõ¼þ¢Ú£º´æÔÚΨһʵÊýx0£¬Ê¹h£¨x0£©=h¡ä£¨x0£©=0£¬Èô¢Ù¡¢¢Úͬʱ³ÉÁ¢£¬Çóg£¨x£©¡¢h£¨x£©µÄ½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®½«±ß³¤Îª2µÄÕý·½ÐÎABCDÑØ¶Ô½ÇÏßBDÕÛµþ£¬Ê¹µÃÆ½ÃæABD¡ÍÆ½ÃæCBD£¬AE¡ÍÆ½ÃæABD£¬ÇÒAE=$\sqrt{2}$£®
£¨1£©Ö¤Ã÷£º¡÷BDEÊÇÈñ½ÇÈý½ÇÐΣ»
£¨2£©Çó¶þÃæ½ÇD-BC-EµÄÓàÏÒÖµ£»
£¨3£©Ö±ÏßBEÉÏÊÇ·ñ´æÔÚÒ»µãM£¬Ê¹µÃCM¡ÎÆ½ÃæADE£¬Èô´æÔÚ£¬ÇóµãMµÄλÖ㬲»´æÔÚÇë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®É躯Êýf£¨x£©=x3-ax2-4x£¨aÊÇʵÊý£©
£¨1£©ÈôÔÚx=-1ʱȡµÃ¼«Öµ£¬Çóa
£¨2£©ÊÇ·ñ´æÔÚʵÊýaʹº¯Êýf£¨x£©ÔÚ[-2£¬2]Éϵ¥µ÷µÝ¼õ£¬Èô´æÔÚ£¬ÇóaµÄȡֵ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªº¯Êýy=x3+ax2+£¨a+6£©x-1Óм«´óÖµºÍ¼«Ð¡Öµ£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®-1£¼a£¼2B£®-3£¼a£¼6C£®a£¼-3»òa£¾6D£®a£¼-1»òa£¾2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Ëæ×ÅÓгµ×åÈËÊýµÄÔö¼Ó£¬Ô½À´Ô½¶àµÄÈ˶¼ÔÚ¹Ø×¢ÆûÓͼ۸ñµÄÐÅÏ¢£¬Ä³»ú¹¹µ÷²éÊÐÃñ»ñÈ¡ÓÐ¹ØÆû³µ¼Û¸ñµÄÐÅÏ¢ÇþµÀµÃµ½ÈçÏÂÊý¾Ý£¬°´ÕÕÐÅÏ¢À´ÀïÀûÓ÷ֳɳéÑùµÄ·½·¨³éÈ¡50ÈË£¬ÆäÖлñÈ¡ÐÅÏ¢µÄÇþµÀΪ¿´µçÊÓµÄÓÐ27ÈË£®
»ñÈ¡ÏûÏ¢ÇþµÀ¿´µçÊÓÊÕÌý¹ã²¥ÆäËüÇþµÀ
ÄÐÐÔ480m180
Å®ÐÔ38421090
£¨¢ñ£©ÇómµÄÖµ£»
£¨¢ò£©´Ó¡°ÆäËüÇþµÀ¡±Öа´ÐÔ±ð±ÈÀý³éȡһ¸öÈÝÁ¿Îª6µÄÑù±¾£¬ÔÙ´ÓÕâ6ÈËÖгéÈ¡3ÈË£¬Çó³éÈ¡µÄ3ÈËÖÐÖÁÉÙ1ÈËÊÇÅ®ÐԵĸÅÂÊ£»
£¨¢ó£©ÏÖ´Ó£¨¢ò£©ÖÐÈ·¶¨µÄÑù±¾ÖÐÿ´Î¶¼³éÈ¡1ÈË£¬Ö±µ½³é³öËùÓÐÅ®ÐÔΪֹ£¬ÉèËùÒª³éÈ¡µÄÈËΪX£¬ÇóXµÄ·Ö²¼ÁÐºÍÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Ä³Ñ§Ð£½øÐÐÏÖ´ú»¯´ï±êÑéÊÕ£¬¼×¡¢ÒÒ¡¢±û¡¢¶¡ËÄλÆÀÎ¯Ëæ»úÈ¥¸ßÈýA¡¢BÁ½¸ö°à¼¶Ìý¿Î£¬ÒªÇóÿ¸ö°à¼¶ÖÁÉÙÓÐһλÆÀίÇÒËÄλÆÀί¶¼Òª²ÎÓëÌý¿Î£®
£¨1£©ÇóÆÀί¼×È¥A°àÌý¿ÎµÄ¸ÅÂÊ£»
£¨2£©ÉèËæ»ú±äÁ¿¦ÎÊÇÕâËÄλÆÀίȥB°àÌý¿ÎµÄÈËÊý£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖª¼¯ºÏAÊǼ¯ºÏPn={1£¬2£¬3£¬¡­£¬n}£¨n¡Ý3£¬n¡ÊN*£©µÄ×Ó¼¯£¬ÇÒAÖÐÇ¡ÓÐ3¸öÔªËØ£¬Í¬Ê±Õâ3¸öÔªËØµÄºÍÊÇ3µÄ±¶Êý£®¼Ç·ûºÏÉÏÊöÌõ¼þµÄ¼¯ºÏAµÄ¸öÊýΪf£¨n£©£®
£¨1£©Çóf£¨3£©£¬f£¨4£©£»
£¨2£©Çóf£¨n£©£¨Óú¬nµÄʽ×Ó±íʾ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ÔÚËÄÀâ×¶S-ABCDÖУ¬µ×ÃæABCDΪ¾ØÐΣ¬SD¡ÍÆ½ÃæABCD£¬AB=SD=2£¬BC=2$\sqrt{2}$µãMΪBCµÄÖеã
£¨1£©Ö¤Ã÷£»AC¡ÍÆ½ÃæSDM£»
£¨2£©Çó¶þÃæ½ÇB-SM-DµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸