精英家教网 > 高中数学 > 题目详情

(2014•宿迁模拟)已知实数a1,a2,a3不全为零,正数x,y满足x+y=2,设的最大值为M=f(x,y),则M的最小值为 .

 

【解析】

试题分析:讨论a2=0,a2≠0,对原分式分子分母同除以a2,运用x≤|x|,然后分子运用柯西不等式,分母运用均值不等式,再化简得到M=,根据条件正数x,y满足x+y=2,消去y,配方求出x2+y2的最小值,从而得到M的最小值.

【解析】
若a2=0,则=0,

若a2≠0,则=

=

∴M=

∵正数x,y满足x+y=2,即y=2﹣x,

∴x2+y2=x2+(2﹣x)2=2x2﹣4x+4=2(x﹣1)2+2,

当x=1时,x2+y2取最小值2,

∴M的最小值为

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源:[同步]2014年新人教A版选修4-6 1.2最大公因数与最小公倍数 题型:选择题

数4557,1953,5115的最大公约数为( )

A.93 B.31 C.651 D.217

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.1数学归纳法练习卷(解析版) 题型:选择题

用数学归纳法证明等式 的过程中,由n=k递推到n=k+1时不等式左边( )

A.增加了项 B.增加了项

C.增加了项 D.以上均不对

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.1数学归纳法练习卷(解析版) 题型:选择题

(2012•成都一模)在用数学归纳法证明f(n)=++…+<1(n∈N*,n≥3)的过程中:假设当n=k(k∈N*,k≥3)时,不等式f(k)<1成立,则需证当n=k+1时,f(k+1)<1也成立.若f(k+1)=f(k)+g(k),则g(k)=( )

A.+ B.+ C. D.

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.3排序不等式练习卷(解析版) 题型:解答题

设a1,a2,…,an为实数,证明:

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.2一般形式柯西不等式练习卷(解析版) 题型:选择题

(2012•湖北)设a,b,c,x,y,z是正数,且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,则=( )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.1二维形式柯西不等式练习卷(解析版) 题型:填空题

(2014•宜昌三模)若a,b,c为正实数且满足a+2b+3c=6,则++的最大值为 .

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.3反证法与放缩法练习卷(解析版) 题型:选择题

用反证法证明:“a>b”,应假设为( )

A.a>b B.a<b C.a=b D.a≤b

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.1比较法练习卷(解析版) 题型:填空题

已知a>b>0,c<d<0,则的大小关系为 .

 

查看答案和解析>>

同步练习册答案