设a1,a2,…,an为实数,证明:
≤
.
见解析
【解析】
试题分析:利用排序原理,n个式子相加,可得n(a12+a22+…+an2)≤(a1+a2+…+an)2,上式两边除以n2,并开方可得结论.
证明:不妨设a1≤a2≤…≤an,则由排序原理得:
a12+a22+…+an2=a1a1+a2a2+…+anan
a12+a22+…+an2≤a1a2+a2a3+…+ana1
a12+a22+…+an2≤a1a3+a2a4+…+an﹣1a1+ana2
…
a12+a22+…+an2≤a1an+a2a1+…+anan﹣1.
将上述n个式子相加,得:n(a12+a22+…+an2)≤(a1+a2+…+an)2,
上式两边除以n2,并开方可得:
≤
.
科目:高中数学 来源:[同步]2014年新人教A版选修4-6 1.2最大公因数与最小公倍数 题型:选择题
已知7163=209×34+57,209=57×3+38,57=38×1=19,38=19×2.根据上述系列等式,确定7163和209的最大公约数是( )
A.19 B.2 C.38 D.57
查看答案和解析>>
科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.1数学归纳法练习卷(解析版) 题型:选择题
利用数学归纳法证明“(n+1)(n+2)…(n+n)=2n×1×3×…×(2n﹣1),n∈N*”时,从“n=k”变到“n=k+1”时,左边应增乘的因式是( )
A.2k+1 B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.3排序不等式练习卷(解析版) 题型:解答题
若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,证明:
≤(
)•(
).当且仅当a1=a2=…=an或b1=b2=…=bn时等号成立.
查看答案和解析>>
科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.2一般形式柯西不等式练习卷(解析版) 题型:填空题
(2014•宿迁模拟)已知实数a1,a2,a3不全为零,正数x,y满足x+y=2,设
的最大值为M=f(x,y),则M的最小值为 .
查看答案和解析>>
科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.2一般形式柯西不等式练习卷(解析版) 题型:选择题
已知x,y,z∈R+且x+y+z=1则x2+y2+z2的最小值是( )
A.1 B.
C.
D.2
查看答案和解析>>
科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.1二维形式柯西不等式练习卷(解析版) 题型:选择题
二维形式的柯西不等式可用( )表示.
A.a2+b2≥2ab(a,b∈R)
B.(a2+b2)(c2+d2)≥(ab+cd)2(a,b,c,d∈R)
C.(a2+b2)(c2+d2)≥(ac+bd)2(a,b,c,d∈R)
D.(a2+b2)(c2+d2)≤(ac+bd)2(a,b,c,d∈R)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com