若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,证明:
≤(
)•(
).当且仅当a1=a2=…=an或b1=b2=…=bn时等号成立.
见解析
【解析】
试题分析:利用排序原理,n个式子相加,可得得:n(a1b1+a2b2+…+anbn)≤(a1+a2+…+an)(b1+b2+…+bn),两边除以n2,即可得到结论.
证明 不妨设a1≤a2≤…≤an,b1≥b2≥…≥bn.
则由排序原理得:
a1b1+a2b2+…+anbn=a1b1+a2b2+…+anbn
a1b1+a2b2+…+anbn≤a1b2+a2b3+…+anb1
a1b1+a2b2+…+anbn≤a1b3+a2b4+…+an﹣1b1+anb2
…
a1b1+a2b2+…+anbn≤a1bn+a2b1+…+anbn﹣1.
将上述n个式子相加,得:n(a1b1+a2b2+…+anbn)
≤(a1+a2+…+an)(b1+b2+…+bn)
上式两边除以n2,得:![]()
≤![]()
![]()
等号当且仅当a1=a2=…=an或b1=b2=…=bn时成立.
科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.2数学归纳法证明不等式举例(解析版) 题型:解答题
(2005•辽宁)已知函数f(x)=
(x≠﹣1).设数列{an}满足a1=1,an+1=f(an),数列{bn}满足bn=|an﹣
|,Sn=b1+b2+…+bn(n∈N*).
(Ⅰ)用数学归纳法证明bn≤
;
(Ⅱ)证明Sn<
.
查看答案和解析>>
科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.1数学归纳法练习卷(解析版) 题型:选择题
用数学归纳法证明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12═
时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是( )
A.(k+1)2+2k2 B.(k+1)2+k2
C.(k+1)2 D.![]()
查看答案和解析>>
科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.1数学归纳法练习卷(解析版) 题型:选择题
某个命题与自然数n有关,若n=k(k∈N*)时命题成立,那么可推得当n=k+1时该命题也成立.现已知当n=5时,该命题不成立,那么可推得( )
A.当n=6时,该命题不成立 B.当n=6时,该命题成立
C.当n=4时,该命题不成立 D.当n=4时,该命题成立
查看答案和解析>>
科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.2一般形式柯西不等式练习卷(解析版) 题型:填空题
(2014•宝鸡二模)已知实数x、y、z满足x+2y+3z=1,则x2+y2+z2的最小值为 .
查看答案和解析>>
科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.1二维形式柯西不等式练习卷(解析版) 题型:选择题
设a,b∈R+,a+b=1,则
+
的最小值为( )
A.2+
B.2
C.3 D.![]()
查看答案和解析>>
科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.2综合法与分析法练习卷(解析版) 题型:选择题
已知a,b,c∈(0,1),则对于(1﹣a)b,(1﹣b)c,(1﹣c)a说法正确的是( )
A.不能都大于
B.都大于![]()
C.都小于
D.至少有一个大于![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com