精英家教网 > 高中数学 > 题目详情

(2005•辽宁)已知函数f(x)=(x≠﹣1).设数列{an}满足a1=1,an+1=f(an),数列{bn}满足bn=|an﹣|,Sn=b1+b2+…+bn(n∈N*).

(Ⅰ)用数学归纳法证明bn≤

(Ⅱ)证明Sn<

 

见解析

【解析】

试题分析:(Ⅰ)我们用数学归纳法进行证明,先证明不等式bn≤当n=1时成立,再假设不等式bn≤当n=k(k≥1)时成立,进而证明当n=k+1时,不等式bn≤也成立,最后得到不等式bn≤对于所有的正整数n成立;

(Ⅱ)根据(Ⅰ)的结论,我们可以利用放缩法证明Sn<,放缩后可以得到一个等比数列,然后根据等比数列前n项公式,即可得到答案.

证明:(Ⅰ)当x≥0时,f(x)=1+≥1.

因为a1=1,所以an≥1(n∈N*).

下面用数学归纳法证明不等式bn≤

(1)当n=1时,b1=﹣1,不等式成立,

(2)假设当n=k时,不等式成立,即bk≤

那么bk+1=|ak+1﹣|=

所以,当n=k+1时,不等式也成立.

根据(1)和(2),可知不等式对任意n∈N*都成立.

(Ⅱ)由(Ⅰ)知,bn≤

所以Sn=b1+b2+…+bn≤(﹣1)++…+=(﹣1)•<(﹣1)•=

故对任意n∈N*,Sn<

练习册系列答案
相关习题

科目:高中数学 来源:[同步]2014年新人教A版选修4-6 2.4一次同余方程练习卷(解析版) 题型:填空题

设a、b、m(m>0)为整数,若a和b被m除得的余数相同,则称a和b对模m同余,记为a≡b(bmodm);已知a=1+C201+C202•2+C203•22+…+C2020•219,b≡a(bmod10),则满足条件的正整数b中,最小的两位数是 .

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-6 1.1整除练习卷(解析版) 题型:填空题

用“秦九韶算法”计算多项式f(x)=4x5﹣3x4+4x3﹣2x2﹣2x+3的值,当x=3时,求多项式值的过程中,要经过 次乘法运算和 次加法运算.

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-6 1.1整除练习卷(解析版) 题型:选择题

今天是星期四,再过22009天后的那一天是( )

A.星期一 B.星期二 C.星期五 D.星期六

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-6 1.1整除练习卷(解析版) 题型:选择题

(2011•江西模拟)在算式“”中,△、Θ都为正整数,且它们的倒数之和最小,则△、Θ的值分别为( )

A.6,6 B.10,5 C.14,4 D.18,3

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.2数学归纳法证明不等式举例(解析版) 题型:填空题

用数学归纳法证明等式时,第一步验证n=1时,左边应取的项是

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.1数学归纳法练习卷(解析版) 题型:选择题

用数学归纳法证明“2n>n2+1对于n≥n0的自然数n都成立”时,第一步证明中的起始值n0应取( )

A.2 B.3 C.5 D.6

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.3排序不等式练习卷(解析版) 题型:解答题

若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,证明:≤()•().当且仅当a1=a2=…=an或b1=b2=…=bn时等号成立.

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.3反证法与放缩法练习卷(解析版) 题型:选择题

用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:

①A+B+C=90°+90°+C>180°,这与三角形内角和为180°相矛盾,A=B=90°不成立;

②所以一个三角形中不能有两个直角;

③假设三角形的三个内角A、B、C中有两个直角,不妨设A=B=90°,

正确顺序的序号为( )

A.①②③ B.①③② C.②③① D.③①②

 

查看答案和解析>>

同步练习册答案