精英家教网 > 高中数学 > 题目详情
14.已知点P(sinα-cosα,2)在第二象限,则α的一个变化区间是($-\frac{3π}{4}+2kπ,\frac{π}{4}+2kπ$),k∈Z.

分析 由点P的横坐标小于0求解三角不等式得答案.

解答 解:∵点P(sinα-cosα,2)在第二象限,
∴sinα-cosα<0,即sinα<cosα.
即$-\frac{3π}{4}+2kπ<α<\frac{π}{4}+2kπ,k∈Z$.
故答案为:($-\frac{3π}{4}+2kπ,\frac{π}{4}+2kπ$),k∈Z.

点评 本题考查三角函数值的符号,考查象限角的概念,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|x2-3x+2=0},B={x|x2-ax+(a-1)=0},C={x|x2-mx+2=0},且B⊆A,C⊆A,求实数a、m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设f(x-1)的定义域为[-2,3],则f($\frac{1}{x}$+2)的定义域为(-∞,-$\frac{1}{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=lg$\frac{2x}{ax+b}$,f(1)=0,且x>0时恒有f(x)-f($\frac{1}{x}$)=lgx成立,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}中,a1=2,a2=3,其前n项和Sn满足Sn+1+Sn-1=2Sn+1,其中n≥2,n∈N*
(1)求证:数列{an}为等差数列,并求其通项公式;
(2)设bn=$\frac{1}{({a}_{n}+1)({a}_{n}-1)}$,Tn为数列{bn}的前n项和,求Tn的取值范围;
(3)设cn=4n+(-1)n-1λ•2an(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有cn+1>cn成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若三角形的周长为l,内切圆半径为r,面积为s,则有s=$\frac{1}{2}$lr,根据类比思想,若四面体的表面积为S,内切球半径为R,体积为V,则有V=$\frac{1}{3}$SR.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知方程(512x2+m1x+1)(512x2+m2x+1)…(512x2+m5x+1)=0的10个根组成一个首项为1的等比数列,则m1+m2+m3+m4+m5=-1023.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知sinα-cosβ=$\frac{1}{2}$,cosα-sinβ=$\frac{1}{3}$,则sin(α+β)=$\frac{59}{72}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.等差数列{an}的公差d=1,前n项和为Sn,若S2n=100,则a${\;}_{1}^{2}$-a${\;}_{2}^{2}$+a${\;}_{3}^{2}$-a${\;}_{4}^{2}$+…+a2n-12-a${\;}_{2n}^{2}$=-100.

查看答案和解析>>

同步练习册答案