【题目】已知函数
(
,
=2.718………),
(I) 当
时,求函数
的单调区间;
(II)当
时,不等式
对任意
恒成立,
求实数
的最大值.
【答案】(1)函数
的单调递增区间为
和
,单调递减区间为
;
(2)符合题意的实数
的最大值为
.
【解析】试题分析:(1)求函数单调区间,即求导研究导函数的正负,导函数大于零求增区间,导函数小于零求减区间;(2)这是不等式恒成立求参的问题,转化为
,
对任意
恒成立,再求导研究函数的单调性,求最值即可.
(1)
由
可知,
令
得
或![]()
令
得
即 此时函数
的单调递增区间为
和
,单调递减区间为
;
(2)当
时,不等式
即 ![]()
令
,
对任意
恒成立
又
当
时,
,所以
在
上递增,且最小值为![]()
(i)当
,即
时,
对任意
恒成立
在
上递增,
当
时,
满足题意; (ii)当
,即
时,
由上可得存在唯一的实数
,使得
,可得当
时,
,
在
上递减,此时
不符合题意; 综上得,当
时,满足题意,即符合题意的实数
的最大值为
.
科目:高中数学 来源: 题型:
【题目】如图所示,平面
平面
,且四边形
为矩形,四边形
为直角梯形,
,
,
,
.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求平面
与平面
所成锐二面角的大小;
(Ⅲ)求直线
与平面
所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年10月,工信部颁发了国内首个
无线电通信设备进网许可证,标志着
基站设备将正式接入公用电信商用网络.某
手机生产商拟升级设备生产
手机,有两种方案可供选择,方案1:直接引进
手机生产设备;方案2:对已有的
手机生产设备进行技术改造,升级到
手机生产设备.该生产商对未来
手机销售市场行情及回报率进行大数据模拟,得到如下统计表:
市场销售状态 | 畅销 | 平销 | 滞销 | |
市场销售状态概率 |
|
|
| |
预期年利润数值(单位:亿元) | 方案1 | 70 | 40 | -40 |
方案2 | 60 | 30 | -10 | |
(1)以预期年利润的期望值为依据,求
的取值范围,讨论该生产商应该选择哪种方案进行设备升级?
(2)设该生产商升级设备后生产的![]()
万部,通过大数据模拟核算,选择方案1所生产的
手机年度总成本
(亿元),选择方案2所生产的
手机年度总成为
(亿元).已知
,当所生产的
手机市场行情为畅销、平销和滞销时,每部手机销售单价分别为0.8万元,
(万元),
(万元),根据(1)的决策,求该生产商所生产的
手机年利润期望的最大值?并判断这个年利润期望的最大值能否达到预期年利润数值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把函数
的图象向右平移
个单位长度,再把所得的函数图象上所有点的横坐标缩短到原来的
(纵坐标不变)得到函数
的图象,关于
的说法有:①函数
的图象关于点
对称;②函数
的图象的一条对称轴是
;③函数
在
上的最上的最小值为
;④函数
上单调递增,则以上说法正确的个数是( )
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线C的方程为
,以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为
.
(1)求直线l的直角坐标方程;
(2)已知P是曲线C上的一动点,过点P作直线
交直线于点A,且直线
与直线l的夹角为45°,若
的最大值为6,求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三棱锥P﹣ABC中.AB⊥BC,△PAC为等边三角形,二面角P﹣AC﹣B的余弦值为
,当三棱锥的体积最大时,其外接球的表面积为8π.则三棱锥体积的最大值为( )
A.1B.2C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
过点
,倾斜角为
.以原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程
.
(1)写出直线
的参数方程及曲线
的直角坐标方程;
(2)若
与
相交于
,
两点,
为线段
的中点,且
,求
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com