【题目】如图,多面体
中,平面
平面
,
,
四边形
为平行四边形.
![]()
(1)证明:
;
(2)若
,求二面角
的余弦值.
科目:高中数学 来源: 题型:
【题目】已知中心在原点
,焦点在
轴上,离心率为
的椭圆过点![]()
![]()
(1)求椭圆的方程;
(2)设不过原点
的直线
与该椭圆交于
两点,满足直线
的斜率依次成等比数列,求
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为F
,点B是椭圆C的短轴的一个端点,ΔOFB的面积为
,椭圆C上的两点H、G关于原点O对称,且
、
的等差中项为2
(1)求椭圆的方程;
(2)是否存在过点M(2,1)的直线
与椭圆C交于不同的两点P、Q,且使得
成立?若存在,试求出直线
的方程;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】贵阳市交管部门于2018年4月对贵阳市长期执行的“两限”政策进行了调整,调整后贵阳市贵A普客小汽车拥有和外地牌照汽车一样的驶入一环开四停四的权利,为统计开放政策实施后贵阳市一环内城区的交通流量状况,市交管部门抽取了某月30天内的日均汽车流量与实际容纳量进行对比,比值记为
,若该比值不超过1称为“畅通”,否则称为“拥堵”,如图所示的程序框图实现的功能是( )
![]()
A.求30天内交通的畅通率B.求30天内交通的拥堵率
C.求30天内交通的畅通天数D.求30天内交通的拥堵天数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD﹣A1B1C1D1中,E,F分别是棱AA1,AD上的点,且AE=EA1,AF
FD.
![]()
(1)求证:平面EC1D1⊥平面EFB;
(2)求二面角E﹣FB﹣A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知函数f(x)=
,其中a>0.
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若在区间
上,f(x)>0恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)
为曲线
上的动点,点
在线段
上,且满足
,求点
的轨迹
的直角坐标方程;
(2)设点
的极坐标为
,点
在曲线
上,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
将圆
的圆周分为四等份,且椭圆
的离心率为
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
交于不同的两点
,且
的中点为
,线段
的垂直平分线为
,直线
与
轴交于点
,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com