精英家教网 > 高中数学 > 题目详情
13.F1、F2为双曲线C:$\frac{x^2}{9}-\frac{y^2}{4}=1$的左、右焦点,点M在双曲线上且∠F1MF2=60°,则${S_{△{F_1}M{F_2}}}$=4$\sqrt{3}$.

分析 设出|MF1|=m,|MF2|=n,利用双曲线的定义以及余弦定理列出关系式,求出mn的值,然后求解三角形的面积.

解答 解:设|MF1|=m,|MF2|=n,
则$\left\{\begin{array}{l}{|m-n|=6①}\\{{m}^{2}+{n}^{2}-mn=52②}\end{array}\right.$,
由②-①2得 mn=16
∴△F1MF2的面积S=$\frac{1}{2}×16×\frac{\sqrt{3}}{2}$=4$\sqrt{3}$,
故答案为4$\sqrt{3}$.

点评 本题考查双曲线的简单性质,双曲线的定义以及余弦定理的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系中,点O为坐标原点,动点P(x,y)与定点F(-1,0)的距离和它到定直线x=-2的距离之比是$\frac{\sqrt{2}}{2}$.
(1)求动点P的轨迹C的方程;
(2)过F作曲线C的不垂直于y轴的弦AB,M为AB的中点,直线OM与${C_1}:{({x-4})^2}+{y^2}=32$交于P,Q两点,求四边形APBQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在三棱柱ABC-A1B1C1中,AB⊥平面BB1C1C,∠BCC1=$\frac{π}{3}$,AB=BB1=2,BC=1,D为CC1中点.
(1)求证:DB1⊥平面ABD;
(2)求二面角A-B1D-A1的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数$f(x)=({x-\frac{1}{2}})({x-\frac{5}{2}})({x-\frac{7}{2}})$,数列{an}的通项公式an=|f(n)|,若数列从第k项起每一项随着n项数的增大而增大,则k的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知异面直线a与b所成角为60°,过空间内一定点P且与直线a、b所成角均为60°的直线有(  )条.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线的一条渐近线过点$({2,\sqrt{3}})$,且双曲线的一个焦点在抛物线${x^2}=4\sqrt{7}y$的准线上,则双曲线的标准方程为(  )
A.$\frac{y^2}{3}-\frac{x^2}{4}=1$B.$\frac{y^2}{4}-\frac{x^2}{3}=1$C.$\frac{x^2}{3}-\frac{y^2}{4}=1$D.$\frac{x^2}{4}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知正方形ABCD的面积为2,点P在边AB上,则$\overrightarrow{PD}•\overrightarrow{PC}$的最小值为(  )
A.$\frac{{\sqrt{6}}}{2}$B.$\frac{3}{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|x2-x-2≤0},B=Z,则A∩B=(  )
A.{-1,0,1,2}B.{-2,-1,0,1}C.{0,1}D.{-1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.约束条件为$\left\{\begin{array}{l}{x+y-5≤0}\\{x-y-k≤0}\\{x≥0,y≥0}\end{array}\right.$,目标函数Z=2x-y,则Z的最大值是(  )
A.-4B.4C.-5D.5

查看答案和解析>>

同步练习册答案