精英家教网 > 高中数学 > 题目详情
2.如图,在圆柱OO1中,矩形ABB1A1是过OO1的截面CC1是圆柱OO1的母线,AB=2,AA1=3,∠CAB=$\frac{π}{3}$.
(1)证明:AC1∥平面COB1
(2)在圆O所在的平面上,点C关于直线AB的对称点为D,求二面角D-B1C-B的余弦值.

分析 (1)连结B1C1、BC1,设BC1∩B1C=M,推导出四边形BB1C1C为平行四边形,从而MO∥AC1,由此能证明AC1∥平面COB1
(2)以点C为坐标原点,分别以CA,CB,OC1为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出二面角D-B1C-B的二面角的余弦值.

解答 证明:(1)连结B1C1、BC1,设BC1∩B1C=M,
∵BB1$\underset{∥}{=}$CC1,∴四边形BB1C1C为平行四边形,∴M为BC1的中点,
在△ABC1中,O为AB的中点,∴MO∥AC1
又AC1?平面B1CD,MO?平面B1CD,
∴AC1∥平面COB1
解:(2)如图,∵AB是圆O的直径,∴AC⊥BC,
∵C1C⊥平面ABC,∴C1C⊥AC,C1C⊥BC,
又∠BAC=60°,AB=2,∴AC=1,BC=$\sqrt{3}$,AA1=3,
以点C为坐标原点,分别以CA,CB,OC1为x轴,y轴,z轴,建立空间直角坐标系,
则C(0,0,0),A(1,0,0),B(0,$\sqrt{3}$,0),C1(0,0,3),
O($\frac{1}{2},\frac{\sqrt{3}}{2}$,0),B1(0,$\sqrt{3},3$),
在圆O上,C,D关于直线AB对称,△AOC为正三角形,且OA=1,
∴CD=$\sqrt{3}OA=\sqrt{3}$,∠ACD=30°,过点D作DP⊥x轴,DQ⊥y轴,垂足分别为P,Q,
则CP=CD•cos$∠ACD=\sqrt{3}×\frac{\sqrt{3}}{3}$=$\frac{3}{2}$,
CQ=CD•sin$∠ACD=\sqrt{3}×\frac{1}{2}=\frac{\sqrt{3}}{2}$,∴D($\frac{3}{2},\frac{\sqrt{3}}{2}$,0),∴$\overrightarrow{CD}$=($\frac{3}{2},\frac{\sqrt{3}}{2}$,0),
设平面CDB1的一个法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CD}=3x+\sqrt{3}y=0}\\{\overrightarrow{n}•\overrightarrow{CB}=\sqrt{3}y+3z=0}\end{array}\right.$,取y=-$\sqrt{3}$,得$\overrightarrow{n}$=(1,-$\sqrt{3}$,1),
平面B1BC的一个法向量$\overrightarrow{m}$=(1,0,0),
设二面角D-B1C-B的二面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}$.
故二面角D-B1C-B的余弦值为$\frac{\sqrt{5}}{5}$.

点评 本题主要考查直线与直线、直线与平面、平面与平面的位置关系及二面角、空间向量等基础知识;考查学生的空间想象能力、推理论证能力及运算求解能力;考查了化归与转化及数形结合的数学思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设命题p:若y=f(x)的定义域为R,且函数y=f(x-2)图象关于点(2,0)对称,则函数y=f(x)是奇函数,命题q:?x≥0,x${\;}^{\frac{1}{2}}$≥x${\;}^{\frac{1}{3}}$,则下列命题中为真命题的是(  )
A.p∧qB.¬p∨qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.△ABC的内角A,B,C的对边分别为a,b,c,若$\frac{a-b+c}{c}$=$\frac{b}{a+b-c}$,则$\frac{b+c}{a}$的取值范围是(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知正三棱锥P-ABC的外接球的球心O满足$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=0,则二面角A-PB-C的正弦值为(  )
A.$\frac{1}{6}$B.$\frac{\sqrt{2}}{8}$C.$\frac{2\sqrt{6}}{5}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.几何体三视图如图所示,则几何体的体积为(  )
A.32B.16C.8D.8$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某三棱锥的三视图如图所示,其中三个视图都是直角三角形,则该三棱锥外接球的体积为(  )
A.B.$\sqrt{6}π$C.D.$4\sqrt{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.为了调查中学生课外阅读古典文学名著的情况,某校学生会从男生中随机抽取了50人,从女生中随机抽取了60人参加古典文学名著知识竞赛,统计数据如表所示,经计算K2≈8.831,则测试成绩是否优秀与性别有关的把握为(  )
优秀非优秀总计
男生351550
女生253560
总计6050110
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.5000.1000.0500.0100.001
k0.4552.7063.8416.63510.828
A.90%B.95%C.99%D.99.9%

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函f(x)=sin(2x-$\frac{π}{6}$)-cos2x.
(Ⅰ)求函数f(x)的最小正周期、最大值及取得最大值时x的集合;
(Ⅱ)设△ABC内角A、B、C的对边分别为a、b、c,若$f(\frac{B}{2})=-\frac{{\sqrt{3}}}{2}$,b=1,$c=\sqrt{3}$,且a>b,求角B和角C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点分别为F1、F2,焦距为2c(c>0),抛物线y2=2cx的准线交双曲线左支于A,B两点,且∠AOB=120°(O为坐标原点),则该双曲线的离心率为(  )
A.$\sqrt{3}+1$B.2C.$\sqrt{2}+1$D.$\sqrt{5}+1$

查看答案和解析>>

同步练习册答案