精英家教网 > 高中数学 > 题目详情
13.△ABC的内角A,B,C的对边分别为a,b,c,若$\frac{a-b+c}{c}$=$\frac{b}{a+b-c}$,则$\frac{b+c}{a}$的取值范围是(1,2].

分析 由已知整理可得:b2+c2-a2=bc,由余弦定理可得cosA=$\frac{1}{2}$,结合范围A∈(0,π),可求A,由三角形内角和定理可求C=$\frac{2π}{3}$-B,利用正弦定理,三角函数恒等变换的应用化简可得$\frac{b+c}{a}$=2sin(B+$\frac{π}{6}$),由B∈(0,$\frac{2π}{3}$),利用正弦函数的性质可求sin(B+$\frac{π}{6}$)∈($\frac{1}{2}$,1],即可得解.

解答 解:∵$\frac{a-b+c}{c}$=$\frac{b}{a+b-c}$,可得:(a-b+c)(a+b-c)=bc,
∴整理可得:b2+c2-a2=bc,
∴由余弦定理可得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∵A∈(0,π),
∴A=$\frac{π}{3}$,可得:C=$\frac{2π}{3}$-B,
∴$\frac{b+c}{a}$=$\frac{sinB+sinC}{sinA}$=$\frac{sinB+sin(\frac{2π}{3}-B)}{\frac{\sqrt{3}}{2}}$=$\frac{\sqrt{3}(\frac{1}{2}cosB+\frac{\sqrt{3}}{2}sinB)}{\frac{\sqrt{3}}{2}}$=2sin(B+$\frac{π}{6}$),
∵B∈(0,$\frac{2π}{3}$),B+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{5π}{6}$),可得:sin(B+$\frac{π}{6}$)∈($\frac{1}{2}$,1],
∴$\frac{b+c}{a}$=2sin(B+$\frac{π}{6}$)∈(1,2].
故答案为:(1,2].

点评 本题主要考查了余弦定理,三角形内角和定理,正弦定理,三角函数恒等变换的应用,正弦函数的性质在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$满足$|{\overrightarrow a}|=4,|{\overrightarrow b}|=2\sqrt{2},\left?{\overrightarrow a,\overrightarrow b}\right>=\frac{π}{4}$,$({\overrightarrow c-\overrightarrow a})•({\overrightarrow c-\overrightarrow b})=-1$,则$|{\overrightarrow c-\overrightarrow a}|$的最大值为$\sqrt{2}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)=a-$\frac{1}{{2}^{x}+1}$是奇函数,则实数a的值为(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{3}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设集合A={x|$\frac{x+1}{1-x}$>0},B={x|x+2≥0},则A∩B=(  )
A.{x|-1<x<1}B.{x|x≥-2}C.{x|-2≤x<1}D.{x|-1<x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|2x-1|-2|x-1|.
(I)作出函数f(x)的图象;
(Ⅱ)若不等式$\frac{a}{1-a}$≤f(x)有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆E的一个顶点为A(0,-1),焦点在x轴上,若椭圆右焦点到直线x-y+2$\sqrt{2}$=0的距离为3
(Ⅰ)求椭圆E的方程;
(Ⅱ)设直线l:y=kx+m(k≠0)与该椭圆交于不同的两点B,C,若坐标原点O到直线l的距离为$\frac{\sqrt{3}}{2}$,求△BOC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆 C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1( a>b>0)经过点 (1,$\frac{{\sqrt{3}}}{2}$),离心率为$\frac{{\sqrt{3}}}{2}$,点 A 为椭圆 C 的右顶点,直线 l 与椭圆相交于不同于点 A 的两个点P (x1,y1),Q (x2,y2).
(Ⅰ)求椭圆 C 的标准方程;
(Ⅱ)当 $\overrightarrow{AP}$?$\overrightarrow{AQ}$=0 时,求△OPQ 面积的最大值;
(Ⅲ)若直线 l 的斜率为 2,求证:△APQ 的外接圆恒过一个异于点 A 的定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在圆柱OO1中,矩形ABB1A1是过OO1的截面CC1是圆柱OO1的母线,AB=2,AA1=3,∠CAB=$\frac{π}{3}$.
(1)证明:AC1∥平面COB1
(2)在圆O所在的平面上,点C关于直线AB的对称点为D,求二面角D-B1C-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=Asin(ωx+ϕ)(A,ω>0,|ϕ|<\frac{π}{2})$的图象在y轴右侧的第一个最高点为$P(\frac{1}{3},2)$,在y轴右侧与x轴的第一个交点为$R(\frac{5}{6},0)$.求函数f(x)的解析式.

查看答案和解析>>

同步练习册答案