精英家教网 > 高中数学 > 题目详情
3.已知函数$f(x)=Asin(ωx+ϕ)(A,ω>0,|ϕ|<\frac{π}{2})$的图象在y轴右侧的第一个最高点为$P(\frac{1}{3},2)$,在y轴右侧与x轴的第一个交点为$R(\frac{5}{6},0)$.求函数f(x)的解析式.

分析 由题意可得A,可求函数周期T,由周期公式可求ω,将点$P(\frac{1}{3},2)$代入解析式,解得φ,从而可求函数y的解析式.

解答 解:由题意,A=2,$\frac{T}{4}=\frac{5}{6}-\frac{1}{3}=\frac{1}{2}$,
所以T=2,
故$\frac{2π}{ω}=2$,解得ω=π,
所以f(x)=2sin(πx+φ),
将点$P(\frac{1}{3},2)$代入上式,
解得$φ=\frac{π}{6}$,
所以函数f(x)的解析式为:$f(x)=2sin({πx+\frac{π}{6}})$.

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的图象和性质,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.△ABC的内角A,B,C的对边分别为a,b,c,若$\frac{a-b+c}{c}$=$\frac{b}{a+b-c}$,则$\frac{b+c}{a}$的取值范围是(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.为了调查中学生课外阅读古典文学名著的情况,某校学生会从男生中随机抽取了50人,从女生中随机抽取了60人参加古典文学名著知识竞赛,统计数据如表所示,经计算K2≈8.831,则测试成绩是否优秀与性别有关的把握为(  )
优秀非优秀总计
男生351550
女生253560
总计6050110
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.5000.1000.0500.0100.001
k0.4552.7063.8416.63510.828
A.90%B.95%C.99%D.99.9%

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函f(x)=sin(2x-$\frac{π}{6}$)-cos2x.
(Ⅰ)求函数f(x)的最小正周期、最大值及取得最大值时x的集合;
(Ⅱ)设△ABC内角A、B、C的对边分别为a、b、c,若$f(\frac{B}{2})=-\frac{{\sqrt{3}}}{2}$,b=1,$c=\sqrt{3}$,且a>b,求角B和角C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=1+a($\frac{1}{2}$)x+($\frac{1}{4}$)x
(1)当a=1时,解不等式f(x)>7;
(2)若对任意x∈[0,+∞),总有f(x)≤3成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.cos(-$\frac{17}{4}$π)+sin(-$\frac{17}{4}$π)的值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知a>0,曲线f(x)=2ax2-$\frac{1}{ax}$在点(1,f(1))处的切线的斜率为k,则当k取最小值时a的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点分别为F1、F2,焦距为2c(c>0),抛物线y2=2cx的准线交双曲线左支于A,B两点,且∠AOB=120°(O为坐标原点),则该双曲线的离心率为(  )
A.$\sqrt{3}+1$B.2C.$\sqrt{2}+1$D.$\sqrt{5}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若实数x,y满足$\left\{\begin{array}{l}x-y+1≤0\\ x>0\\ y≤2\end{array}\right.$则$\frac{2y}{2x+1}$的取值范围是[$\frac{4}{3}$,4].

查看答案和解析>>

同步练习册答案