精英家教网 > 高中数学 > 题目详情
8.cos(-$\frac{17}{4}$π)+sin(-$\frac{17}{4}$π)的值是0.

分析 由条件利用诱导公式进行化简所给的式子,可得结果.

解答 解:cos(-$\frac{17}{4}$π)+sin(-$\frac{17}{4}$π)=cos(-$\frac{π}{4}$)+sin(-$\frac{π}{4}$)=cos$\frac{π}{4}$-sin$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$-$\frac{\sqrt{2}}{2}$=0,
故答案为:0.

点评 本题主要考查利用诱导公式进行化简求值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知椭圆E的一个顶点为A(0,-1),焦点在x轴上,若椭圆右焦点到直线x-y+2$\sqrt{2}$=0的距离为3
(Ⅰ)求椭圆E的方程;
(Ⅱ)设直线l:y=kx+m(k≠0)与该椭圆交于不同的两点B,C,若坐标原点O到直线l的距离为$\frac{\sqrt{3}}{2}$,求△BOC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若x,y满足约束条件$\left\{\begin{array}{l}{x+y>1}\\{x-y≥-1}\\{2x-y≤2}\end{array}\right.$,且目标函数z=ax+2y仅在点(1,0)处取得最小值,则a的取值范围是(  )
A.(-1,2)B.(-4,2)C.(-4,0)D.(-4,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,4),$\overrightarrow{c}$=$\overrightarrow{a}$+λ$\overrightarrow{b}$(λ∈R).
(1)若$\overrightarrow{b}$⊥$\overrightarrow{c}$,求|$\overrightarrow{c}$|的值;
(2)λ何值时,$\overrightarrow{c}$与$\overrightarrow{a}$的夹角最小?此时$\overrightarrow{c}$与$\overrightarrow{a}$的位置关系如何?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=Asin(ωx+ϕ)(A,ω>0,|ϕ|<\frac{π}{2})$的图象在y轴右侧的第一个最高点为$P(\frac{1}{3},2)$,在y轴右侧与x轴的第一个交点为$R(\frac{5}{6},0)$.求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P为线段AD(含端点)上一个动点,设$\overrightarrow{AP}=x\overrightarrow{AD},\overrightarrow{PB}•\overrightarrow{PC}=y$,对于函数y=f(x),给出以下三个结论:①当a=2时,函数f(x)的值域为[1,4];②对于任意的a>0,均有f(1)=1;③对于任意的a>0,函数f(x)的最大值均为4.其中所有正确的结论序号为②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线$\frac{x^2}{a^2}-{y^2}=1(a>0)$的一条渐近线方程为y+2x=0,则a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点分别为F1,F2,过F2的直线与双曲线的右支交于两点A,B,若|AF1|:|AB|=3:4,且F2是AB的一个四等分点,则双曲线C的离心率是(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{10}}}{2}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=2\sqrt{3}sinxcosx-2{cos^2}x-1,x∈R$.
(I)求函数f(x)的最小正周期和最小值;
(II)在△ABC中,A,B,C的对边分别为a,b,c,已知$c=\sqrt{3},f(C)=0,sinB=2sinA$,求a,b的值.

查看答案和解析>>

同步练习册答案