精英家教网 > 高中数学 > 题目详情
15.已知a>0,曲线f(x)=2ax2-$\frac{1}{ax}$在点(1,f(1))处的切线的斜率为k,则当k取最小值时a的值为$\frac{1}{2}$.

分析 求出f(x)的导数,可得切线的斜率,由基本不等式,可得斜率k的最小值,同时可得a的值.

解答 解:f(x)=2ax2-$\frac{1}{ax}$的导数为f′(x)=4ax+$\frac{1}{a{x}^{2}}$,
可得在点(1,f(1))处的切线的斜率k=4a+$\frac{1}{a}$,a>0,
可得k=4a+$\frac{1}{a}$≥2$\sqrt{4a•\frac{1}{a}}$=4,
当且仅当4a=$\frac{1}{a}$,即a=$\frac{1}{2}$,k取得最小值4.
故答案为:$\frac{1}{2}$.

点评 本题考查导数的运用:求切线的斜率,考查基本不等式的运用:求最值,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知椭圆 C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1( a>b>0)经过点 (1,$\frac{{\sqrt{3}}}{2}$),离心率为$\frac{{\sqrt{3}}}{2}$,点 A 为椭圆 C 的右顶点,直线 l 与椭圆相交于不同于点 A 的两个点P (x1,y1),Q (x2,y2).
(Ⅰ)求椭圆 C 的标准方程;
(Ⅱ)当 $\overrightarrow{AP}$?$\overrightarrow{AQ}$=0 时,求△OPQ 面积的最大值;
(Ⅲ)若直线 l 的斜率为 2,求证:△APQ 的外接圆恒过一个异于点 A 的定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若命题“?x∈[-1,1],1+2x+a•4x<0”是假命题,则实数a的最小值为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=Asin(ωx+ϕ)(A,ω>0,|ϕ|<\frac{π}{2})$的图象在y轴右侧的第一个最高点为$P(\frac{1}{3},2)$,在y轴右侧与x轴的第一个交点为$R(\frac{5}{6},0)$.求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知双曲线x2-$\frac{{y}^{2}}{m}$=1的左右焦点分别为F1、F2,过点F2的直线交双曲线右支于A,B两点,若△ABF1是以A为直角顶点的等腰三角形,则△AF1F2的面积为4-2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线$\frac{x^2}{a^2}-{y^2}=1(a>0)$的一条渐近线方程为y+2x=0,则a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,角A,B,C的对边分别为a,b,c,若c=2,a2=b2+1,则acosB=(  )
A.$\frac{5}{8}$B.$\frac{5}{4}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知双曲线x2-$\frac{{y}^{2}}{m}$=1的左右焦点分别为F1、F2,过点F2的直线交双曲线右支于A、B两点,若△ABF1是以A为直角顶点的等腰三角形,则实数m的值为4-2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=$\sqrt{3}$sin2x+sinxcosx-$\frac{\sqrt{3}}{2}$.
(1)求f(x)的单调增区间;
(2)已知△ABC中,角A,B,C的对边分别为a,b,c,若A为锐角且f(A)=$\frac{\sqrt{3}}{2}$,b+c=4,求a的取值范围.

查看答案和解析>>

同步练习册答案