分析 依题意,“?x0∈[-1,1],使得1+2x0+a•4x0≥0成立,分离a,利用配方法与指数函数的性质即可求得实数a的最小值.
解答 解:∵命题“?x∈[-1,1],1+2x+a•4x<0”是假命题,
∴?x0∈[-1,1],使得1+2x0+a•4x0≥0成立,
令${2}^{{x}_{0}}$=t,∴$\frac{1}{2}≤t≤2$,g(t)=-(t2+t).则a≥g(t)min.
g(t)=-(t+$\frac{1}{2}$)2+$\frac{1}{4}$≤-6,
∴a≥-6,∴实数a的最小值为-6.
故答案为-6.
点评 本题考查命题的真假判断与应用,着重考查全称命题与特称命题的关系,考查存在性命题成立问题,考查转化思想与思维运算能力,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 优秀 | 非优秀 | 总计 | |
| 男生 | 35 | 15 | 50 |
| 女生 | 25 | 35 | 60 |
| 总计 | 60 | 50 | 110 |
| P(K2≥k) | 0.500 | 0.100 | 0.050 | 0.010 | 0.001 |
| k | 0.455 | 2.706 | 3.841 | 6.635 | 10.828 |
| A. | 90% | B. | 95% | C. | 99% | D. | 99.9% |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{\frac{2}{π}}$ | B. | $\sqrt{\frac{1}{π}}$ | C. | $\sqrt{2π}$ | D. | $\sqrt{π}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com