精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,PA⊥平面ABCDCDADBCAD.

(Ⅰ)求证:CDPD

(Ⅱ)求证:BD⊥平面PAB

(Ⅲ)在棱PD上是否存在点M,使CM∥平面PAB,若存在,确定点M的位置,若不存在,请说明理由.

【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)在棱PD上存在点M,使CM∥平面PAB,且MPD的中点.

【解析】

(Ⅰ)由题意可得CD⊥平面PAD从而易得CDPD

(Ⅱ)要证BD⊥平面PAB关键是证明

(Ⅲ)在棱PD上存在点M,使CM∥平面PAB,且MPD的中点.

(Ⅰ)证明:因为PA⊥平面ABCD平面ABCD

所以CDPA.

因为CDAD

所以CD⊥平面PAD.

因为平面PAD

所以CDPD.

(II)因为PA⊥平面ABCD平面ABCD

所以BDPA.

在直角梯形ABCD中,

由题意可得

所以

所以.

因为

所以平面PAB.

(Ⅲ)解:在棱PD上存在点M,使CM∥平面PAB,且MPD的中点.

证明:取PA的中点N,连接MNBN

因为MPD的中点,所以.

因为,所以.

所以MNBC是平行四边形,

所以CMBN.

因为平面PAB, 平面PAB.

所以平面PAB.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在矩形中, , , 的中点,将沿向上折起,使平面平面

(Ⅰ)求证: ;

(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某单位的食堂中,食堂每天以元/斤的价格购进米粉,然后以4.4元/碗的价格出售,每碗内含米粉0.2斤,如果当天卖不完,剩下的米粉以2元/斤的价格卖给养猪场.根据以往统计资料,得到食堂某天米粉需求量的频率分布直方图如图所示,若食堂某天购进了80斤米粉,以(单位:斤)(其中)表示米粉的需求量, (单位:元)表示利润.

(Ⅰ)计算当天米粉需求量的平均数,并直接写出需求量的众数和中位数;

(Ⅱ) 表示为的函数;

Ⅲ)根据直方图估计该天食堂利润不少于760元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}满足当n1时,an,且a1.

(1)求证:数列为等差数列;

(2)a1a2是否是数列{an}中的项?如果是,求出是第几项;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x).

1)求f(2)f()f(3)f()的值;

2)求证:f(x)f()是定值;

3)求f(2)f()f(3)f()f(2012)f()的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象经过点()和(),完成下面问题:

1)求函数的表达式;

2)在给出的平面直角坐标系中,请用适当的方法画出这个函数的图象,并写出这个函数的一条性质;

3)已知函数的图象如图所示,结合你所画出的图象,直接写出的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高考复习经过二轮“见多识广”之后,为了研究考前“限时抢分”强化训练次数与答题正确率﹪的关系,对某校高三某班学生进行了关注统计,得到如下数据:

1

2

3

4

20

30

50

60

(1)求关于的线性回归方程,并预测答题正确率是100﹪的强化训练次数;

(2)若用表示统计数据的“强化均值”(精确到整数),若“强化均值”的标准差在区间内,则强化训练有效,请问这个班的强化训练是否有效?

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

样本数据的标准差为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,若对于任意实数对,存在,使成立,则称集合垂直对点集;下列四个集合中,是垂直对点集的是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中, 平面经过,直线则平面截该正方体所得截面的面积为

A. B. C. D.

查看答案和解析>>

同步练习册答案