【题目】如图,在四棱锥中,PA⊥平面ABCD,CD⊥AD,BC∥AD,.
(Ⅰ)求证:CD⊥PD;
(Ⅱ)求证:BD⊥平面PAB;
(Ⅲ)在棱PD上是否存在点M,使CM∥平面PAB,若存在,确定点M的位置,若不存在,请说明理由.
【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)在棱PD上存在点M,使CM∥平面PAB,且M是PD的中点.
【解析】
(Ⅰ)由题意可得CD⊥平面PAD,从而易得CD⊥PD;
(Ⅱ)要证BD⊥平面PAB,关键是证明;
(Ⅲ)在棱PD上存在点M,使CM∥平面PAB,且M是PD的中点.
(Ⅰ)证明:因为PA⊥平面ABCD,平面ABCD
所以CD⊥PA.
因为CD⊥AD,,
所以CD⊥平面PAD.
因为平面PAD,
所以CD⊥PD.
(II)因为PA⊥平面ABCD,平面ABCD
所以BD⊥PA.
在直角梯形ABCD中,,
由题意可得,
所以,
所以.
因为,
所以平面PAB.
(Ⅲ)解:在棱PD上存在点M,使CM∥平面PAB,且M是PD的中点.
证明:取PA的中点N,连接MN,BN,
因为M是PD的中点,所以.
因为,所以.
所以MNBC是平行四边形,
所以CM∥BN.
因为平面PAB, 平面PAB.
所以平面PAB.
科目:高中数学 来源: 题型:
【题目】在某单位的食堂中,食堂每天以元/斤的价格购进米粉,然后以4.4元/碗的价格出售,每碗内含米粉0.2斤,如果当天卖不完,剩下的米粉以2元/斤的价格卖给养猪场.根据以往统计资料,得到食堂某天米粉需求量的频率分布直方图如图所示,若食堂某天购进了80斤米粉,以(单位:斤)(其中)表示米粉的需求量, (单位:元)表示利润.
(Ⅰ)计算当天米粉需求量的平均数,并直接写出需求量的众数和中位数;
(Ⅱ) 将表示为的函数;
(Ⅲ)根据直方图估计该天食堂利润不少于760元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}满足当n>1时,an=,且a1=.
(1)求证:数列为等差数列;
(2)a1a2是否是数列{an}中的项?如果是,求出是第几项;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=.
(1)求f(2)+f(),f(3)+f()的值;
(2)求证:f(x)+f()是定值;
(3)求f(2)+f()+f(3)+f()+…+f(2012)+f()的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象经过点(,)和(,),完成下面问题:
(1)求函数的表达式;
(2)在给出的平面直角坐标系中,请用适当的方法画出这个函数的图象,并写出这个函数的一条性质;
(3)已知函数的图象如图所示,结合你所画出的图象,直接写出的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高考复习经过二轮“见多识广”之后,为了研究考前“限时抢分”强化训练次数与答题正确率﹪的关系,对某校高三某班学生进行了关注统计,得到如下数据:
1 | 2 | 3 | 4 | |
20 | 30 | 50 | 60 |
(1)求关于的线性回归方程,并预测答题正确率是100﹪的强化训练次数;
(2)若用表示统计数据的“强化均值”(精确到整数),若“强化均值”的标准差在区间内,则强化训练有效,请问这个班的强化训练是否有效?
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
=, =- ,
样本数据的标准差为:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com