精英家教网 > 高中数学 > 题目详情
12.若定义在R上的函数f(x)满足f′(x)-2f(x)-4>0,f(0)=-1,则不等式f(x)>e2x-2(其中e是自然对数的底数)的解集为(  )
A.(0,+∞)B.(-∞,-1)∪(0,+∞)C.(-∞,0)∪(0,+∞)D.(-1,+∞)

分析 由已知条件构造辅助函数F(x)=$\frac{f(x)+2}{{e}^{2x}}$,求导,根据已知求得函数的单调区间,结合原函数的性质和函数值,即可f(x)>e2x-2的解集.

解答 解:由f(x)>e2x-2,得f(x)+2>e2x,得$\frac{f(x)+2}{{e}^{2x}}$>1,令F(x)=$\frac{f(x)+2}{{e}^{2x}}$,
则F′(x)=$\frac{f′(x){e}^{2x}-2[f(x)+2]{e}^{2x}}{({e}^{2x})^{2}}$=$\frac{f′(x)-2f(x)-4}{{e}^{2x}}$,
∵f′(x)-2f(x)-4>0,
∴F′(x)>0,
∴F(x)=$\frac{f(x)+2}{{e}^{2x}}$在R上单调递增,
f(0)=-1,F(0)=1,
∴原不等式等价于F(x)>F(0),
∴x>0,故不等式f(x)>e2x-2的解集为(0,+∞),
故答案选:A.

点评 本题考查函数的导数与单调性的结合,根据已知条件构造辅助函数,然后用导数判断函数的单调性是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.下列对应是集合A到集合B上的映射的是(  )
A.A=N+,B=N+,f:x→|x-3|B.A=N+,B={-1,1,-2},f:x→(-1)x
C.A=Z,B=Q,f:x→$\frac{3}{x}$D.A=N+,B=R,f:x→x的平方根

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知x>0,函数$f(x)=lnx-\frac{ax}{x+1}$.
(1)若函数f(x)在其定义域内单调递增,求a的取值范围;
(2)若f(x)有两个极值点x1,x2,求证:$f({x_1})+f({x_2})≥\frac{x+1}{x}•[{f(x)-x+1}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=x3-3bx+b在区间(0,1)内有极值,则实数b的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)在x=c处的导数存在,则“c为函数f(x)的极值点”是“f′(c)=0”成立的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.数列{an}中,满足an+2=2an+1-an,且a1,a4031是函数f(x)=$\frac{1}{3}$x3-4x2+6x-1的极值点,则log2a2016的值是(  )
A.3B.4C.5D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=\frac{m}{2}{x^2}-x-lnx$.
(Ⅰ)求曲线C:y=f(x)在x=1处的切线l的方程;
(Ⅱ)若函数f(x)在定义域内是单调函数,求m的取值范围;
(Ⅲ)当m>-1时,(Ⅰ)中的直线l与曲线C:y=f(x)有且只有一个公共点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设曲线y=xn+1(n∈N*)在点(1,1)处的切线与y轴的交点坐标为(0,-n).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,F1,F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,经过右焦点F2的直线与双曲线C的右支交于P,Q两点,且|PF2|=2|F2Q|,PQ⊥F1Q,则双曲线C的离心率是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{10}}{2}$D.$\frac{\sqrt{17}}{3}$

查看答案和解析>>

同步练习册答案