精英家教网 > 高中数学 > 题目详情
17.下列对应是集合A到集合B上的映射的是(  )
A.A=N+,B=N+,f:x→|x-3|B.A=N+,B={-1,1,-2},f:x→(-1)x
C.A=Z,B=Q,f:x→$\frac{3}{x}$D.A=N+,B=R,f:x→x的平方根

分析 根据映射的定义分别进行判断即可.

解答 解:A.当x=3时,|x-3|=0,不属于B,即3没有对应元素,故A错误,
B.当x是正偶数时,(-1)x=1,当x是正奇数时,(-1)x=-1,满足映射的定义,
C.当x=0时,$\frac{3}{x}$无意义,即0没有对应元素,故C错误,
D.当x>0时,x的平方根为$±\sqrt{x}$,有两个元素和x对应,不满足对应的唯一性,不是映射.
故选:B

点评 本题主要考查映射的判断,利用映射的定义分别进行判断是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在平面直角坐标系xOy中,已知直线l:x+y+a=0与点A(2,0),若直线l上存在点M满足|MA|=2|MO|(O为坐标原点),则实数a的取值范围是[$\frac{2-4\sqrt{2}}{3}$,$\frac{2+4\sqrt{2}}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知等差数列{an}的前n项和为Sn,若a9+a13=8-ka11,S21=21,则k=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.$\frac{2tan15°}{1-ta{n}^{2}15°}$=(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.(a+b)9的展开式中第6项二项式系数为(  )
A.C${\;}_{9}^{6}$B.-C${\;}_{9}^{6}$C.C${\;}_{9}^{5}$D.-C${\;}_{9}^{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=$\frac{x}{x-2}$(x≠2)的单调减区间是(-∞,2),(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax2-(a+1)x+2(a∈R).
(I)当a=2时,解不等式f(x)>1;
(Ⅱ)若对任意x∈[-1,3],都有f(x)≥0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.化简求值:
①1!+2•2!+3•3!+…+n•n!;
②$\frac{1}{2!}$+$\frac{2}{3!}$+$\frac{3}{4!}$+…+$\frac{n-1}{n!}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若定义在R上的函数f(x)满足f′(x)-2f(x)-4>0,f(0)=-1,则不等式f(x)>e2x-2(其中e是自然对数的底数)的解集为(  )
A.(0,+∞)B.(-∞,-1)∪(0,+∞)C.(-∞,0)∪(0,+∞)D.(-1,+∞)

查看答案和解析>>

同步练习册答案