精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的前n项和为Sn , 且Sn=n(n+1),
(1)求数列{an}的通项公式an
(2)数列{bn}的通项公式bn= ,求数列{bn}的前n项和为Tn

【答案】
(1)解:n=1时,S1=a1=2,

n≥2时,an=Sn﹣Sn1=n(n+1)﹣(n﹣1)n=2n

经检验n=1时成立,

综上 an=2n


(2)解:由(1)可知

Tn=b1+b2+b3+…+bn

=

=

=


【解析】(1)当n≥2时,由an=Sn﹣Sn1=2n,再求得n=1时a1的值,检验是否满足n≥2时的关系式,从而可得数列{an}的通项公式an;(2)利用裂项法可得bn= ),从而可得数列{bn}的前n项和为Tn
【考点精析】通过灵活运用数列的前n项和,掌握数列{an}的前n项和sn与通项an的关系即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上是减函数,求实数的取值范围;

(2)当时,分别求函数的最小值和的最大值,并证明当时, 成立;

(3)令,当时,判断函数有几个不同的零点并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义平面向量之间的一种运算“⊙”如下:对任意的 ,令 ,下面说法错误的是(
A.若 共线,则 =0
B. =
C.对任意的λ∈R,有 =
D.( 2+( 2=| |2| |2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点P、Q分别在直线3x﹣y+5=0和3x﹣y﹣13=0上运动,线段PQ中点为M(x0 , y0),且x0+y0>4,则 的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,BC边上的高所在的直线方程为x﹣2y+1=0,∠A的角平分线所在的直线方程为y=0,点C的坐标为(1,2).
(1)求点A和点B的坐标;
(2)又过点C作直线l与x轴、y轴的正半轴分别交于点M,N,求△MON的面积最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.

(1)证明:BE∥平面ADP;
(2)求直线BE与平面PDB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)当时,求的单调区间和极值;

(II)若对于任意,都有成立,求k的取值范围;

(Ⅲ),且,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=lnx,g(x)= x2+mx+ (m<0),直线l与函数f(x)的图象相切,切点的横坐标为1,且直线l与函数g(x)的图象也相切.
(1)求直线l的方程及实数m的值;
(2)若h(x)=f(x)﹣x+3,求函数h(x)的最大值;
(3)当0<b<a时,求证:f(a+b)﹣f(2a)<

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是椭圆的长轴与短轴的一个端点, 是椭圆的左、右焦点,以点为圆心、3为半径的圆与以点为圆心、1为半径的圆的交点在椭圆上,且

(1)求椭圆的方程;

(2)设为椭圆上一点,直线轴交于点,直线轴交于点,求证:

查看答案和解析>>

同步练习册答案