【题目】已知数列{an}的前n项和为Sn , 且Sn=n(n+1),
(1)求数列{an}的通项公式an
(2)数列{bn}的通项公式bn= ,求数列{bn}的前n项和为Tn .
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若函数在上是减函数,求实数的取值范围;
(2)当时,分别求函数的最小值和的最大值,并证明当时, 成立;
(3)令,当时,判断函数有几个不同的零点并证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义平面向量之间的一种运算“⊙”如下:对任意的 ,令 ,下面说法错误的是( )
A.若 与 共线,则 ⊙ =0
B. ⊙ = ⊙
C.对任意的λ∈R,有 ⊙ = ⊙ )
D.( ⊙ )2+( )2=| |2| |2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC中,BC边上的高所在的直线方程为x﹣2y+1=0,∠A的角平分线所在的直线方程为y=0,点C的坐标为(1,2).
(1)求点A和点B的坐标;
(2)又过点C作直线l与x轴、y轴的正半轴分别交于点M,N,求△MON的面积最小值及此时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.
(1)证明:BE∥平面ADP;
(2)求直线BE与平面PDB所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=lnx,g(x)= x2+mx+ (m<0),直线l与函数f(x)的图象相切,切点的横坐标为1,且直线l与函数g(x)的图象也相切.
(1)求直线l的方程及实数m的值;
(2)若h(x)=f(x)﹣x+3,求函数h(x)的最大值;
(3)当0<b<a时,求证:f(a+b)﹣f(2a)< .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知分别是椭圆的长轴与短轴的一个端点, 是椭圆的左、右焦点,以点为圆心、3为半径的圆与以点为圆心、1为半径的圆的交点在椭圆上,且.
(1)求椭圆的方程;
(2)设为椭圆上一点,直线与轴交于点,直线与轴交于点,求证: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com