【题目】如图,四棱锥的底面是平行四边形,.
(1)求证:平面平面;
(2)若,为的中点,为棱上的点,平面,求二面角的余弦值.
【答案】(1)见解析.
(2) .
【解析】分析:(1)由平面,可得,由,可得,利用线面垂直的判定定理可得平面,从而根据面面垂直的判定定理可得结果;(2)以所在直线分别为轴,轴,轴建立空间直角坐标系,利用向量垂直数量积为零,列方程组分别求出平面与平面的一个法向量,利用空间向量夹角余弦公式求解即可.
详解:(1)∵AB∥CD,PC⊥CD,∴AB⊥PC,
∵AB⊥AC,AC∩PC=C,∴AB⊥平面PAC,
∴AB⊥PA,又∵PA⊥AD,AB∩AD=A,
∴PA⊥平面ABCD,PA平面PAB,
∴平面PAB⊥平面ABCD.
(2)连接BD交AE于点O,连接OF,
∵E为BC的中点,BC∥AD,
∴==,
∵PD∥平面AEF,PD平面PBD,
平面AEF∩平面PBD=OF,
∴PD∥OF,
∴==,
以AB,AC,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系A-xyz,
则A(0,0,0),B(3,0,0),C(0,3,0),D(-3,3,0),
P(0,0,3),E(
设平面ADF的法向量m=(x1,y1,z1),
∵=(2,0,1),=(-3,3,0),
由·m=0,·m=0得取m=(1,1,-2).
设平面DEF的法向量n=(x2,y2,z2),
∵=(,-,0),=(,-,1),
由·n=0,·n=0得取n=(1,3,4).
cosm,n==-,
∵二面角A-DF-E为钝二面角,∴二面角A-DF-E的余弦值为-.
科目:高中数学 来源: 题型:
【题目】中石化集团获得了某地深海油田块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料.进入全面勘探时期后,集团按网络点米布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见下表:
井号 | 1 | 2 | 3 | 4 | 5 | 6 |
坐标(x,y)(km) | (2,30) | (4,40) | (5,60) | (6,50) | (8,70) | (1,y) |
钻探深度(km) | 2 | 4 | 5 | 6 | 8 | 10 |
出油量(L) | 40 | 70 | 110 | 90 | 160 | 205 |
(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;
(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的,的值(,精确到0.01)与(I)中b,a的值差不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井?(参考公式和计算结果:,,,)
(Ⅲ)设出油量与勘探深度的比值k不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数X的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次奥运会男子羽毛球单打比赛中,运动员甲和乙进入了决赛.假设每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4.利用计算机模拟试验,估计甲获得冠军的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中有7个球,其中4个白球,3个红球,从袋中任意取出2个球,求下列事件的概率:
(1) 取出的2个球都是白球;
(2)取出的2个球中1个是白球,另1个是红球.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com