科目:高中数学 来源: 题型:
已知公差不为0的等差数列{an}的首项为2,且a1,a2,a4成等比数列.
(1)求数列{an}的通项公式;
(2)令bn=
(n∈N*),求数列{bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
一学生参加市场营销调查活动,从某商场得到11月份新款家电M的部分销售资料.资料显示:11月2日开始,每天的销售量比前一天多t台(t为常数),期间某天由于商家提高了家电M的价格,从当天起,每天的销售量比前一天少2台.11月份前2天共售出8台,11月5日的销售量为18台.
(1)若商家在11月1日至15日之间未提价,试求这15天家电M的总销售量.
(2)若11月1日至15日的总销售量为414台,试求11月份的哪一天,该商场售出家电M的台数最多?并求这一天售出的台数.
查看答案和解析>>
科目:高中数学 来源: 题型:
设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
平面直角坐标系中,过原点O的直线l与曲线y=ex-1交于不同的A,B两点,分别过点A,B作y轴的平行线,与曲线y=ln x交于点C,D,则直线CD的斜率是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
如右图所示,圆O1和圆O2的半径长都等于1,|O1O2|=4.过动点P分别作圆O1,圆O2的切线PM,PN(M,N为切点),使得|PM|=
|PN|.试建立平面直角坐标系,并求动点P的轨迹方程.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
设m,n∈R,若直线l:mx+ny-1=0与x轴交于点A,与y轴交于点B,且l与圆x2+y2=4相交所得弦长为2,O为坐标原点,则△OAB面积的最小值为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知直线l1:4x-3y+6=0和直线l2:x=-
;若拋物线C:y2=2px(p>0)上的点到直线l1和直线l2的距离之和的最小值为2.
(1)求抛物线C的方程;
(2)若以拋物线上任意一点M为切点的直线l与直线l2交于点N,试问在x轴上是否存在定点Q,使Q点在以MN为直径的圆上,若存在,求出点Q的坐标,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com