精英家教网 > 高中数学 > 题目详情
4.已知抛物线y2=2px(p>0),其焦点到准线的距离与双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1的焦点到渐近线的距离相等,则该抛物线方程为y2=4x.

分析 双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1的焦点($\sqrt{13}$,0)到渐近线y=$\frac{2}{3}$x的距离为$\frac{2\sqrt{13}}{\sqrt{4+9}}$=2,进而可得p,即可求出抛物线的方程.

解答 解:双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1的焦点($\sqrt{13}$,0)到渐近线y=$\frac{2}{3}$x的距离为$\frac{2\sqrt{13}}{\sqrt{4+9}}$=2,
∵抛物线焦点到准线的距离与双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1的焦点到渐近线的距离相等,
∴p=2,
∴抛物线方程为y2=4x,
故答案为:y2=4x.

点评 本题考查抛物线方程,考查抛物线的定义,考查双曲线的性质,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.函数$f(x)=\frac{{{{log}_2}({1+x})}}{{\sqrt{1-x}}}$的定义域是(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.为了比较两种复合材料制造的轴承(分别称为类型I轴承和类型II轴承)的使用寿命,检验了两种类型轴承各30个,它们的使用寿命(单位:百万圈)如下表:
      类型I
 6.2  6.4  8.3  8.6  9.4  9.8  10.3  10.6  11.2  11.4  11.6  11.6  11.7  11.8  11.8
1 12.2  12.3  12.3  12.5  12.5  12.6  12.7  12.8  13.3  13.3  13.4  13.6  13.8  14.2  14.5
类型II
1 8.4  8.5  8.7  9.2  9.2  9.5  9.7  9.7  9.8  9.8  10.1  10.2  IO.3  10.3  10.4
1 10.6  10.8  10.9  11.2  11.2  11.3  11.5  11.5  11.6  11.8  12.3  12.4  12.7  13.1  13.4
(Ⅰ)根据两组数据完成下面茎叶图;

(Ⅱ)分别估计两种类型轴承使用寿命的中位数;
(Ⅲ)根据茎叶图对两种类型轴承的使用寿命进行评价.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(x)是定义在R上的奇函数,若对于?x∈R,都有f(x+2)=-f(x),且当x∈[0,2)时,f(x)=ex-1,则f(2015)+f(-2014)=1-e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{x^{2}}{a^{2}}$+$\frac{y^{2}}{b^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,离心率为$\frac{1}{2}$,且经过点(1,$\frac{3}{2}$)
(1)求椭圆C的方程;
(2)动直线l:y=x+m与椭圆C相切,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l,求四边形F1MNF2的面积;
(3)过椭圆C内一点T(t,0)作两条直线分别交椭圆C于点A,C,和B,D,设直线AC与BD的斜率分别是k1,k2,若|AT|•|TC|=|BT|•|TD|试问k1+k2是否为定值,若是,求出定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x-$\frac{2}{x}$+1-alnx,a>0,讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)与直线y=3的交点的横坐标构成以π为公差的等差数列,且x=$\frac{π}{6}$是f(x)的一条对称轴,则下列区间中不是函数f(x)的单调递增区间的是(  )
A.[-$\frac{π}{3}$,0]B.[-$\frac{4π}{3}$,-$\frac{5π}{6}$]C.[$\frac{2π}{3}$,$\frac{7π}{6}$]D.[-$\frac{5π}{6}$,-$\frac{π}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求由椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1所围图形分别绕x轴和y轴旋转所成的旋转体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知角α的顶点与平面直角坐标系的原点重合,始边在x轴的正半轴上,终边经过点P(-3a,4a)(a≠0,a∈R),则cos2α的值是$-\frac{7}{25}$.

查看答案和解析>>

同步练习册答案