精英家教网 > 高中数学 > 题目详情
17.为了比较两种复合材料制造的轴承(分别称为类型I轴承和类型II轴承)的使用寿命,检验了两种类型轴承各30个,它们的使用寿命(单位:百万圈)如下表:
      类型I
 6.2  6.4  8.3  8.6  9.4  9.8  10.3  10.6  11.2  11.4  11.6  11.6  11.7  11.8  11.8
1 12.2  12.3  12.3  12.5  12.5  12.6  12.7  12.8  13.3  13.3  13.4  13.6  13.8  14.2  14.5
类型II
1 8.4  8.5  8.7  9.2  9.2  9.5  9.7  9.7  9.8  9.8  10.1  10.2  IO.3  10.3  10.4
1 10.6  10.8  10.9  11.2  11.2  11.3  11.5  11.5  11.6  11.8  12.3  12.4  12.7  13.1  13.4
(Ⅰ)根据两组数据完成下面茎叶图;

(Ⅱ)分别估计两种类型轴承使用寿命的中位数;
(Ⅲ)根据茎叶图对两种类型轴承的使用寿命进行评价.

分析 (Ⅰ)根据两组数据,即可得到茎叶图;
(Ⅱ)注意到两组数字是有序排列的,中位数为第15,16两个数,即可得出结论;
(Ⅲ)由中位数及标准差分析即可.

解答 解:(Ⅰ)茎叶图:
(Ⅱ)由茎叶图知,类型I轴承的使用寿命按由小到大排序,排在15,16位是11.8,12.2,故中位数为12;类型II轴承的使用寿命按由小到大排序,排在15,16位是10.4,10.6,故中位数为10.5;
(Ⅲ)由所给茎叶图知,类型I轴承的使用寿命的中位数高于对类型II轴承的使用寿命的中位数,表明类型I轴承的使用寿命较长;茎叶图可以大致看出类型I轴承的使用寿命的标准差大于类型II轴承的使用寿命的标准差,表明类型I轴承稳定型较好.

点评 本题考查了样本的数字特征,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设i为虚数单位,若$\frac{a+2i}{i}$=b-i(a,b∈R),则a+b=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1({a>0,b>0})$的一条渐近线与$y=\sqrt{3}x-1$平行,且它的一个焦点在抛物线x2=24y的准线上,则双曲线的方程为(  )
A.$\frac{y^2}{36}-\frac{x^2}{108}=1$B.$\frac{y^2}{9}-\frac{x^2}{27}=1$C.$\frac{y^2}{108}-\frac{x^2}{36}=1$D.$\frac{y^2}{27}-\frac{x^2}{9}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知i是虚数单位,复数z满足$\frac{z}{1-z}$=i,则z的模是(  )
A.1B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某程序框图如图所示,运行该程序时,输出的S值是(  )
A.44B.70C.102D.140

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$\frac{π}{2}$<θ<π,则$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cosθ}}$等于cos$\frac{θ}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=x(1-lnx),g(x)=x+$\frac{a}{x}$-1.
(1)求f(x)的单调区间;
(2)若对?x1∈[1,e],?x2∈[1,e],时f(x1)=g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知抛物线y2=2px(p>0),其焦点到准线的距离与双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1的焦点到渐近线的距离相等,则该抛物线方程为y2=4x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知$\frac{ai}{1-i}=-1+i$,其中i是虚数单位,那么实数a=2.

查看答案和解析>>

同步练习册答案