精英家教网 > 高中数学 > 题目详情
5.已知$\frac{ai}{1-i}=-1+i$,其中i是虚数单位,那么实数a=2.

分析 复数方程两边同乘1-i,利用复数相等的充要条件,求出a的值即可.

解答 解:因为$\frac{ai}{1-i}=-1+i$,所以ai=(-1+i)(1-i)=2i
由复数相等可知a=2.
故答案为:2.

点评 本题考查复数的相等的充要条件的应用,复数代数形式的混合运算,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.为了比较两种复合材料制造的轴承(分别称为类型I轴承和类型II轴承)的使用寿命,检验了两种类型轴承各30个,它们的使用寿命(单位:百万圈)如下表:
      类型I
 6.2  6.4  8.3  8.6  9.4  9.8  10.3  10.6  11.2  11.4  11.6  11.6  11.7  11.8  11.8
1 12.2  12.3  12.3  12.5  12.5  12.6  12.7  12.8  13.3  13.3  13.4  13.6  13.8  14.2  14.5
类型II
1 8.4  8.5  8.7  9.2  9.2  9.5  9.7  9.7  9.8  9.8  10.1  10.2  IO.3  10.3  10.4
1 10.6  10.8  10.9  11.2  11.2  11.3  11.5  11.5  11.6  11.8  12.3  12.4  12.7  13.1  13.4
(Ⅰ)根据两组数据完成下面茎叶图;

(Ⅱ)分别估计两种类型轴承使用寿命的中位数;
(Ⅲ)根据茎叶图对两种类型轴承的使用寿命进行评价.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)与直线y=3的交点的横坐标构成以π为公差的等差数列,且x=$\frac{π}{6}$是f(x)的一条对称轴,则下列区间中不是函数f(x)的单调递增区间的是(  )
A.[-$\frac{π}{3}$,0]B.[-$\frac{4π}{3}$,-$\frac{5π}{6}$]C.[$\frac{2π}{3}$,$\frac{7π}{6}$]D.[-$\frac{5π}{6}$,-$\frac{π}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求由椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1所围图形分别绕x轴和y轴旋转所成的旋转体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)=xlnx.
(Ⅰ) 求f(x)的极值;
(Ⅱ)设g(x)=f(x+1),若对任意的x≥0,都有g(x)≥mx成立,求实数m的取值范围;
(Ⅲ)若0<a<b,证明:0<f(a)+f(b)-2f($\frac{a+b}{2}$)<(b-a)ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x-1|
(1)若f(x)+f(1-x)≥a恒成立,求a的取值范围;
(2)若a+2b=8,求证:[f(a)]2+[f(b)]2≥5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.球O与一圆柱的侧面和上下底面都相切,则球O的表面积与该圆柱的表面积的比值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知角α的顶点与平面直角坐标系的原点重合,始边在x轴的正半轴上,终边经过点P(-3a,4a)(a≠0,a∈R),则cos2α的值是$-\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知等腰梯形ABCD中,AB∥CD,AB=2CD=2AD,E为AB中点,现将△ADE折起,使平面A1DE⊥平面BCDE,P是DE中点,Q是A1B的中点.
(Ⅰ)求证:PQ∥平面A1CD;
(Ⅱ)求二面角B-PC-Q的余弦值.

查看答案和解析>>

同步练习册答案