精英家教网 > 高中数学 > 题目详情
8.△ABC的三个角A,B,C所对的边分别为a,b,c,$1+\frac{tanA}{tanB}=\frac{2c}{{\sqrt{3}b}}$.
(Ⅰ)求角A的大小;
(Ⅱ)若△ABC为锐角三角形,求函数y=2sin2B-2sinBcosC的取值范围.

分析 (Ⅰ)由正弦定理,得$1+\frac{sinAcosB}{cosAsinB}=\frac{sin(A+B)}{cosAsinB}$,由sin(A+B)=sinC,得到$\frac{sinC}{cosAsinB}=\frac{2sinC}{{\sqrt{3}sinB}}$,由此能求出$cosA=\frac{{\sqrt{3}}}{2}$,从而能求出A.
(Ⅱ)求出$B+C=\frac{5π}{6}$,推导出y=sin(2B-$\frac{π}{6}$)+$\frac{1}{2}$,由此能求出函数y=2sin2B-2sinBcosC的取值范围.

解答 解:(Ⅰ)因为$1+\frac{tanA}{tanB}=\frac{2c}{{\sqrt{3}b}}$,所以由正弦定理,得$1+\frac{sinAcosB}{cosAsinB}=\frac{sin(A+B)}{cosAsinB}$…(2分)
因为A+B+C=π,所以sin(A+B)=sinC,
所以$\frac{sinC}{cosAsinB}=\frac{2sinC}{{\sqrt{3}sinB}}$…(4分)
所以$cosA=\frac{{\sqrt{3}}}{2}$,故$A=\frac{π}{6}$…(6分)
(Ⅱ)因为A+B+C=π,$A=\frac{π}{6}$,所以$B+C=\frac{5π}{6}$…(7分) 
所以$y=2{sin^2}B-2sinBcosC=1-cos2B-2sinBcos(\frac{5π}{6}-B)$
=$1-cos2B+\sqrt{3}sinBcosB-{sin^2}B$
=$1-cos2B+\frac{{\sqrt{3}}}{2}sin2B-\frac{1}{2}+\frac{1}{2}cos2B$
=$\frac{1}{2}+\frac{{\sqrt{3}}}{2}sin2B-\frac{1}{2}cos2B=sin(2B-\frac{π}{6})+\frac{1}{2}$…(9分)
又△ABC为锐角三角形,$c=\frac{5π}{6}-B<\frac{π}{2}$,
所以$\frac{π}{3}<B<\frac{π}{2}⇒\frac{π}{2}<2B-\frac{π}{6}<\frac{5π}{6}$
所以$y=sin(2B-\frac{π}{6})+\frac{1}{2}∈(1,\frac{3}{2})$…(12分)

点评 本题考查角的大小的求法,考查三角函数的取值范围的求法,考查正弦定理、余弦定理、三角函数二倍角公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.tan$\frac{7π}{6}$的值为(  )
A.-$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若等比数列{an}的各项均为正数,且a10a11+a9a12=2e3(e为自然对数的底数),则lna1+lna2+…+lna20=(  )
A.20B.30C.40D.50

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.下列命题中,正确的命题有②④.
①回归直线$\hat y=\hat bx+\hat a$恒过样本点的中心$(\overline x,\overline y)$,且至少过一个样本点;
②将一组数据的每个数据都加一个相同的常数后,方差不变;
③用相关指数R2来刻画回归效果,R2越接近0,说明模型的拟合效果越好;
④用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第一组中用抽签法确定的号码为6号.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知sinA=2sinB,c=$\frac{3}{2}$b.
(Ⅰ)求sinA的值;
(Ⅱ)若△ABC的面积为3$\sqrt{15}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.定义函数max{f(x),g(x)}=$\left\{\begin{array}{l}{f(x),f(x)≥g(x)}\\{g(x),f(x)<g(x)}\end{array}\right.$,则max{sinx,cosx}的最小值为-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知圆锥的底面半径为4,高为9,则该圆锥的体积为48π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设复数z满足$\frac{1+z}{1+i}$=2-i,则|$\frac{1}{z}$|=(  )
A.$\sqrt{5}$B.$\frac{1}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知(2x-$\frac{1}{\sqrt{x}}$)n展开式的二项式系数之和为64,则其展开式中含x3项的系数为240.

查看答案和解析>>

同步练习册答案