考点:棱柱、棱锥、棱台的体积,直线与平面平行的判定
专题:综合题,空间位置关系与距离
分析:(Ⅰ)在正三棱柱中,易证明BB1⊥平面ABC及AD⊥BD,根据三垂线定理可知:AD⊥B1D
(Ⅱ)根据直线与平面平行的判定定理可知,只要在平面AB1D里面找到一条直线与A1C平行即可,因为D为BC中点,所以构造平行线的时候可以考虑一下构造“中位线”,连接A1B,设A1B∩AB1=E,连接DE,所以DE∥A1C.
(Ⅲ)利用VC-AB1D=VB1-ADC,即可求三棱锥C-AB1D的体积.
解答:

(Ⅰ)证明:∵ABC-A
1B
1C
1是正三棱柱,
∴BB
1⊥平面ABC,
∴BD是B
1D在平面ABC上的射影
在正△ABC中,∵D是BC的中点,
∴AD⊥BD,
根据三垂线定理得,AD⊥B
1D.
(Ⅱ)证明:连接A
1B,设A
1B∩AB
1=E,连接DE.
∵AA
1=AB∴四边形A
1ABB
1是正方形,
∴E是A
1B的中点,
又D是BC的中点,
∴DE∥A
1C.(7分)
∵DE?平面AB
1D,A
1C?平面AB
1D,
∴A
1C∥平面AB
1D.(9分)
(Ⅲ)解:由图知
VC-AB1D=VB1-ADC,AA
1=AB=a,
∴
VC-AB1D=VB1-ADC=
S
△ADCBB
1=
a3.
点评:本题考查空间垂直关系、平行关系的证明,考查三棱锥体积的计算.解题时要认真审题,注意合理地化空间问题为平面问题.