精英家教网 > 高中数学 > 题目详情
3.已知$\overrightarrow a$=(1,0),$\overrightarrow b$=(1,1),若$\overrightarrow a$+λ$\overrightarrow b$与$\overrightarrow a$垂直,则λ=(  )
A.0B.1C.-1D.2

分析 根据平面向量的坐标运算与数量积运算,列出方程求出λ的值.

解答 解:$\overrightarrow a$=(1,0),$\overrightarrow b$=(1,1),
当$\overrightarrow a$+λ$\overrightarrow b$与$\overrightarrow a$垂直时,
($\overrightarrow a$+λ$\overrightarrow b$)•$\overrightarrow a$=0,
即${\overrightarrow{a}}^{2}$+λ$\overrightarrow{a}$•$\overrightarrow{b}$=1+λ=0,
解得λ=-1.
故选:C.

点评 本题考查了平面向量的坐标运算与数量积运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知A(-4,3)、B(2,5)、C(6,3)、D(-3,0),则直线AB与直线CD(  )
A.平行B.相交C.垂直D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设y=e3,则y′等于(  )
A.3e2B.e2C.0D.e3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知下列命题:
①命题“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1<3x”;
②已知p,q为两个命题,若“p∨q”为假命题,则“(¬p)∧(¬q)为真命题”;
③“a>2”是“a>5”的充分不必要条件;
④“若xy=0,则x=0且y=0”的逆否命题为真命题.
其中所有真命题的序号是②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求下列函数的反函数:
(1)y=1+log2(x-1)
(2)y=x2-1(-1≤x≤0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足:a1=3,an=an-1+2n-1(n≥2,n∈N*).
(1)求数列{an}的通项公式及前n项和Sn
(2)令bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,Tn=b1+2b2+…+2n-1bn(n∈N*),求证:Tn<$\frac{1}{6}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数y=f(x)存在反函数y=f-1(x),若函数$y=f(x)+\frac{1}{x}$的图象经过点(1,2),则函数$y={f^{-1}}(x)-\frac{1}{x}$的图象经过点(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若f(x)=(x-1)2(x≤1),则其反函数f-1(x)=1-$\sqrt{x}$(x≥0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知焦点在y轴的椭圆C上、下焦点分别是F1,F2,且长轴长为4,离心率为$\frac{{\sqrt{3}}}{2}$,直线y=mx+1与椭圆将于A、B两点.
(1)求椭圆C的标准方程;
(2)若$\overrightarrow{OA}⊥\overrightarrow{OB}$,求m的值;
(3)已知真命题:“如果点P(x0,y0)在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,那么过点P的椭圆的切线方程为$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{{b}^{2}}$=1.”利用上述结论,解答下面问题:
若点P是椭圆C上除长轴端点外的任一点,过点P作斜率为k的直线l,使l与椭圆C有且只有一个公共点,设直线的PF1,PF2斜率分别为k1,k2.若k≠0,试证明k(k1+k2)为定值,并求出这个定值.

查看答案和解析>>

同步练习册答案