精英家教网 > 高中数学 > 题目详情
11.设函数f(x)=ex-x,h(x)=f(x)+x-alnx.
(1)求函数f(x)在区间[-1,1]上的值域;
(2)证明:当a>0时,h(x)≥2a-alna.

分析 (1)求出函数f(x)的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的值域即可;
(2)求出h(x)的导数,根据函数的单调性,求出h(x)的最小值,从而证出结论即可.

解答 解:(1)∵f'(x)=ex-1,令f'(x)=0,得x=0,
在(-1,0)上,f'(x)<0,f(x)单调递减;
在(0,1)上,f'(x)>0,f(x)单调递增;
∴当x∈[-1,1]时,f(x)min=f(0)=1,
又∵$f(-1)=1+\frac{1}{e},f(1)=e-1,f(-1)<f(1)$,
∴函数的值域为[1,e-1].
(2)证明:∵h(x)=ex-alnx,$h'(x)={e^x}-\frac{a}{x}=0$,即${e^x}=\frac{a}{x}(x>0)$,
当a>0时该方程有唯一零点记为x0,即${e^{x_0}}=\frac{a}{x_0}$,
当x∈(0,x0)时,h'(x)<0,h(x)单调递减;
当x∈(x0,+∞)时,h'(x)>0,h(x)单调递增,
∴$h{(x)_{min}}=h({x_0})={e^{x_0}}-aln{x_0}$
=$\frac{a}{x_0}+aln\frac{1}{x_0}=\frac{a}{x_0}+aln\frac{{{e^{x_0}}}}{a}$
=$\frac{a}{x_0}+aln{e^{x_0}}-alna=\frac{a}{x_0}+a{x_0}-alna≥2a-alna$.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想、转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.下列说法中正确的是(  )
A.命题“p∧q”为假命题,则p,q均为假命题
B.命题“?x∈(0,+∞),2x>1”的否定是“?x°∈(0,+∞),2x°≤1”
C.命题“若a>b,则a2>b2”的逆否命题是“若a2<b2,则a<b”
D.设x∈R,则“x>$\frac{1}{2}$”是“2x2+x-1>0”的必要而不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知x、y都是非负实数,且x+y=2,则$\frac{8}{(x+2)(y+4)}$的最小值为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x)是R上的偶函数,且满足f(x+3)=f(x),当x∈[-$\frac{3}{2}$,0]时,f(x)=-2x,则f(-5)=(  )
A.-2B.2C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知命题p:lg(x2-2x-2)≥0;命题q:0<x<4.若p且q为假,p或q为真,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设a,b为实数,函数y1=x2+ax+b,y2=x2+bx+a均有两个不同的零点,且y=y1y2只有三个不同零点,则这三个不同零点之和为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}的前n项和为Sn,a1=2,an+1=Sn+2(n≥1,n∈N*),数列{bn}满足bn=$\frac{2n-1}{{a}_{n}}$.
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn
(3)若数列{cn}满足cn=$\frac{{a}_{n}}{({a}_{n}-1)^{2}}$,且{cn}的前n项和为Kn,求证:Kn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=mln(x+1),g(x)=$\frac{x}{x+1}$(x>-1).
(Ⅰ)讨论函数F(x)=f(x)-g(x)在(-1,+∞)上的单调性;
(Ⅱ)若y=f(x)与y=g(x)的图象有且仅有一条公切线,试求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合M={-1,0,1},N={y|y=1-cos$\frac{π}{2}$x,x∈M},则集合M∩N的真子集的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案