分析 (1)依题意,利用同角三角函数间的关系式可求得cosθ,继而可得tanθ的值;
(2)由(1)中$sinθ=\frac{3}{5}$,cosθ=-$\frac{4}{5}$可求得sin2θ与cos2θ的值,再利用两角差的余弦计算可得$cos(2θ-\frac{π}{3})$的值.
解答 解:(1)∵$sinθ=\frac{3}{5}$,且θ是第二象限角,
∴$cosθ=-\sqrt{1-{{sin}^2}θ}=-\sqrt{1-{{(\frac{3}{5})}^2}}=-\frac{4}{5}$,
∴$tanθ=\frac{sinθ}{cosθ}=-\frac{3}{4}$…(4分)
(2)$sin2θ=-\frac{24}{25}$,$cos2θ=\frac{7}{25}$,
∴$cos(2θ-\frac{π}{3})=cos2θcos\frac{π}{3}+sin2θsin\frac{π}{3}$=$\frac{{7-24\sqrt{3}}}{50}$…(12分)
点评 本题考查同角三角函数间的关系式及两角差的余弦公式的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,-4) | B. | (-3,-6) | C. | (-5,-10) | D. | (-4,-8) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | d>3 | B. | $d<\frac{15}{4}$ | C. | $3≤d≤\frac{15}{4}$ | D. | $3<d≤\frac{15}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{3}{2}$,6] | B. | [-$\frac{3}{2}$,-1] | C. | [-1,6] | D. | [-6,$\frac{3}{2}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com